925 resultados para ADRENAL AXIS
Resumo:
?Glucocorticoids (GCs) are often used for the treatment of rheumatic disorders. However, doses are prescribed, which may suppress the hypothalamic-pituitary-adrenal (HPA) axis. After GC withdrawal, recovery of the HPA axis may be delayed putting the patient at risk for adrenal insufficiency. We assessed adrenal function and factors influencing adrenal responsiveness after termination of GC therapy in paediatric patients with rheumatic diseases.
Resumo:
OBJECTIVE To analyze prospectively the hypothalamic-pituitary-adrenal (HPA) axis and clinical outcome in patients treated with prednisone for exacerbated chronic obstructive pulmonary disease (COPD). DESIGN Prospective observational study. SUBJECTS AND METHODS Patients presenting to the emergency department were randomized to receive 40 mg prednisone daily for 5 or 14 days in a placebo-controlled manner. The HPA axis was longitudinally assessed with the 1 μg corticotropin test and a clinical hypocortisolism score at baseline, on day 6 before blinded treatment, at hospital discharge, and for up to 180 days of follow-up. Prednisone was stopped abruptly, irrespective of the test results. Patients discharged with pathological test results received instructions about emergency hydrocortisone treatment. RESULTS A total of 311 patients were included in the analysis. Mean basal and stimulated serum total cortisol levels were highest on admission (496±398 and 816±413 nmol/l respectively) and lowest on day 6 (235±174 and 453±178 nmol/l respectively). Pathological stimulation tests were found in 63, 38, 9, 3, and 2% of patients on day 6, at discharge, and on days 30, 90, and 180 respectively, without significant difference between treatment groups. Clinical indicators of hypocortisolism did not correlate with stimulation test results, but cortisol levels were inversely associated with re-exacerbation risk. There were no hospitalizations or deaths as a result of adrenal crisis. CONCLUSION Dynamic changes in the HPA axis occur during and after the treatment of acute exacerbations of COPD. In hypocortisolemic patients who were provided with instructions about stress prophylaxis, the abrupt termination of prednisone appeared safe.
Resumo:
An essential component of regulated steroidogenesis is the translocation of cholesterol from the cytoplasm to the inner mitochondrial membrane where the cholesterol side-chain cleavage enzyme carries out the first committed step in steroidogenesis. Recent studies showed that a 30-kDa mitochondrial phosphoprotein, designated steroidogenic acute regulatory protein (StAR), is essential for this translocation. To allow us to explore the roles of StAR in a system amenable to experimental manipulation and to develop an animal model for the human disorder lipoid congenital adrenal hyperplasia (lipoid CAH), we used targeted gene disruption to produce StAR knockout mice. These StAR knockout mice were indistinguishable initially from wild-type littermates, except that males and females had female external genitalia. After birth, they failed to grow normally and died from adrenocortical insufficiency. Hormone assays confirmed severe defects in adrenal steroids—with loss of negative feedback regulation at hypothalamic–pituitary levels—whereas hormones constituting the gonadal axis did not differ significantly from levels in wild-type littermates. Histologically, the adrenal cortex of StAR knockout mice contained florid lipid deposits, with lesser deposits in the steroidogenic compartment of the testis and none in the ovary. The sex-specific differences in gonadal involvement support a two-stage model of the pathogenesis of StAR deficiency, with trophic hormone stimulation inducing progressive accumulation of lipids within the steroidogenic cells and ultimately causing their death. These StAR knockout mice provide a useful model system in which to determine the mechanisms of StAR’s essential roles in adrenocortical and gonadal steroidogenesis.
Resumo:
The womb is the first developmental environment. After developmental psychobiologists started to investigate intrauterine evolution of infant and its long-term impact, they found that prenatal and postnatal development is influenced by mother’s psychological health. Specifically, scientific research evidence indicates that prenatal stress is a possible cause of subsequent psychopathological vulnerability. This vulnerability comes from stress sensitivity and is the basis of many childhood disorders. In the last decade, there are evidences for a fetal origin of stress sensitivity in the context of the fetal programming theory (Entringer et al., 2009, Grant et al., 2009, Gutteling et al., 2004, Huizink et al., 2004, O’Connor et al., 2005). According to fetal programming hypothesis, babies that have been exposed to high levels of prenatal stress would develop elevated HPA axis reactivity and thus increased stress sensitivity in the postnatal period. In the field of animal psychobiology, several studies have shown that prenatal stress could play some role on fetal programming of neurodevelopment and HPA axis (Glover, 2010, Weinstock, 2005, 2008). In human psychobiology, evidences are less clear (Glover, 2010). Although research in this regard has been growing during the last few years, more studies are warranted to investigate the relationship between maternal stress and fetal programming of neurodevelopment and the HPA axis in humans, to confirm the findings which are evident from animal psychobiology...
Resumo:
Alcoholism is a disorder marked by cycles of heavy drinking and chronic relapse, and adolescents are an age cohort particularly susceptible to consuming large amounts of alcohol, placing them at high risk for developing an alcohol use disorder. Adolescent humans and rats voluntarily consume more alcohol than their adult counterparts, suggesting that younger consumers of alcohol may be less sensitive to its aversive effects, which are regulated by the function of the hypothalamic-pituitary-adrenal (HPA) stress axis. While HPA axis dysfunction resulting from ethanol exposure has been extensively studied in adult animals, what happens in the adolescent brain remains largely unclear. In this study, chronic injections of ethanol was used to model alcohol dependence in adult and adolescent rats, and post-withdrawal anxiety behaviors were measured using light-dark box testing. Furthermore, corticosterone (CORT) release during treatment and after withdrawal was measured by collecting fecal and plasma samples from adults and adolescents. It was found that adults, but not adolescents, exhibit significant anxiety-like behavior following chronic ethanol withdrawal. Additionally, while the process of chronic ethanol treatment elicits an increase in day-by-day CORT release in both adults and adolescents, significantly sustained levels of CORT were not observed during withdrawal for either age group. Moreover, it was found that adults experience a longer-lasting CORT increase during chronic treatment, suggesting a larger and more robust period of dysfunction in the HPA axis for older consumers of alcohol. These results highlight CORT and glucocorticoids in general as a potential therapeutic target for treatment for alcoholism, especially that which has an onset during adolescence.
Resumo:
The aim of this cephalometric study was to evaluate the influence of the sagittal skeletal pattern on the 'Y-axis of growth' measurement in patients with different malocclusions. Lateral head films from 59 patients (mean age 16y 7m, ranging from 11 to 25 years) were selected after a subjective analysis of 1630 cases. Sample was grouped as follows: Group 1 - class I facial pattern; group 2 - class II facial pattern; and Group 3 - class III facial pattern. Two angular measurements, SNGoGn and SNGn, were taken in order to determine skeletal vertical facial pattern. A logistic regression with errors distributed according to a binomial distribution was used to test the influence of the sagittal relationship (Class I, II, III facial patterns) on vertical diagnostic measurement congruence (SNGoGn and SNGn). RESULTS show that the probability of congruence between the patterns SNGn and SNGoGn was relatively high (70%) for group 1, but for groups II (46%) and III (37%) this congruence was relatively low. The use of SNGn appears to be inappropriate to determine the vertical facial skeletal pattern of patients, due to Gn point shifting throughout sagittal discrepancies. Clinical Significance: Facial pattern determined by SNGn must be considered carefully, especially when severe sagittal discrepancies are present.
Resumo:
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.
Resumo:
Type II 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD2), encoded by the HSD3B2 gene, is a key enzyme involved in the biosynthesis of all the classes of steroid hormones. Deleterious mutations in the HSD3B2 gene cause the classical deficiency of 3β-HSD2, which is a rare autosomal recessive disease that leads to congenital adrenal hyperplasia (CAH). CAH is the most frequent cause of ambiguous genitalia and adrenal insufficiency in newborn infants with variable degrees of salt losing. Here we report the molecular and structural analysis of the HSD3B2 gene in a 46,XY child, who was born from consanguineous parents, and presented with ambiguous genitalia and salt losing. The patient carries a homozygous nucleotide c.665C>A change in exon 4 that putatively substitutes the proline at codon 222 for glutamine. Molecular homology modeling of normal and mutant 3β-HSD2 enzymes emphasizes codon 222 as an important residue for the folding pattern of the enzyme and validates a suitable model for analysis of new mutations.
Resumo:
OBJECTIVE: To evaluate insulin resistance and lipid profile in women with congenital adrenal hyperplasia (CAH) caused by classical 21-hydroxylase deficiency (21OHD), and their association with body mass index (BMI) and corticosteroid dosage. SUBJECTS AND METHODS: We assessed BMI, waist circumference, current glucocorticoid dosage, glucose, insulin and lipid profile in eighteen young women (mean ± SD, 19.3 ± 3.0 years) with 21OHD CAH. RESULTS: BMI was normal in 12 patients, 5 of them were overweight, and 1 was obese. Waist circumference was high in 7 patients. Fasting insulin and HOMA-IR were elevated in seven and eight patients, respectively. Total cholesterol and triglycerides were high in only two patients, and HDL-cholesterol was low in four. Insulin resistance was not associated with BMI, waist circumference or glucocorticoid dose. CONCLUSIONS: Young women with 21OHD CAH had infrequent dyslipidemia, but had a higher prevalence of insulin resistance and central obesity, that were independent of BMI or corticosteroid dosage.
Resumo:
Objective: To reevaluate the responses of thyrotropin-releasing hormone ( TRH) stimulation test in baseline condition as well as after the administration of graded supraphysiological doses of liothyronine ( L- T-3) in normal subjects. Design: To assess various parameters related to the hypothalamic-pituitary axis and peripheral tissue responses to L- T-3 in 22 normal individuals ( median age: 30.5 years). Subjects were submitted to an intravenous TRH test at baseline condition and also to the oral administration of sequential and graded doses of L- T-3 ( 50, 100, and 200 mu g/day), each given over 3 days, at an outpatient clinic. Blood samples were obtained for thyrotropin (TSH) and prolactin (PRL) at basal and then 15, 30, and 60 minutes after the TRH injection. Effects of L- T3 administration on cholesterol, creatine kinase, retinol, ferritin, and sex hormone-binding globulin ( SHBG) were also measured at basal and after the oral administration of L- T-3. Main outcome: TRH administration resulted in an increase of 4-to 14-fold rise in serum TSH ( 8.3 +/- 2.5-fold), and in a slight rise in serum PRL concentrations ( 3.8 +/- 1.5-fold). Administration of graded doses of triiodothyronine ( T-3) resulted in a dose-dependent suppression of TSH and PRL. Basal thyroxine- binding globulin (TBG) and cholesterol levels decreased, and ferritin and SHBG increased after L- T-3 administration, while creatine kinase and retinol did not change throughout the study. There was a positive correlation between basal TSH and TSH peak response to TRH at basal condition and after each sequential L- T-3 doses. On the other hand, TSH peak response to the TRH test did not predict cholesterol, TBG, ferritin, or SHBG values. Conclusion: Using the current methods on hormone and biochemical analysis, we standardized the response of many parameters to TRH stimulation test after sequential and graded T-3 suppression test in normal subjects. Our data suggest that the evaluation of the responses of the hypothalamus-pituitary axis to TRH test as well as the impact of L- T-3 on peripheral tissues were not modified by the current methods.
Resumo:
A finite element analysis and a parametric optimization of single-axis acoustic levitators are presented. The finite element method is used to simulate a levitator consisting of a Langevin ultrasonic transducer with a plane radiating surface and a plane reflector. The transducer electrical impedance, the transducer face displacement, and the acoustic radiation potential that acts on small spheres are determined by the finite element method. The numerical electrical impedance is compared with that acquired experimentally by an impedance analyzer, and the predicted displacement is compared with that obtained by a fiber-optic vibration sensor. The numerical acoustic radiation potential is verified experimentally by placing small spheres in the levitator. The same procedure is used to optimize a levitator consisting of a curved reflector and a concave-faced transducer. The numerical results show that the acoustic radiation force in the new levitator is enhanced 604 times compared with the levitator consisting of a plane transducer and a plane reflector. The optimized levitator is able to levitate 3, 2.5-mm diameter steel spheres with a power consumption of only 0.9 W.
Resumo:
In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of Sao Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD.
Resumo:
The activity of alpha-conotoxin (alpha-CTX) lml, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX lml was a potent inhibitor of the neuronal[ nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 mu M, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. (alpha-CTX lml also inhibited nicotine-evoked Ca-45(2+) uptake but not Ca-45(2+) uptake stimulated by 56 mM Kr. In contrast, alpha-CTX lml had no effect at the neuromuscular junction over the concentration range 1-20 mu M. Bovine chromaffin cells are known to contain the alpha 3 beta 4, alpha 7, and (possibly) alpha 3 beta 4 alpha 5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha 7 nicotinic receptors are not involved. We propose that alpha-CTX lml interacts selectively with the functional (alpha 3 beta 4 or alpha 3 beta 4 alpha 5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.