986 resultados para ACTIVATE CASPASE-1
Resumo:
BACKGROUND: The exact pathogenesis of the pediatric disorder periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis (PFAPA) syndrome is unknown. OBJECTIVES: We hypothesized that PFAPA might be due to dysregulated monocyte IL-1β production linked to genetic variants in proinflammatory genes. METHODS: Fifteen patients with PFAPA syndrome were studied during and outside a febrile episode. Hematologic profile, inflammatory markers, and cytokine levels were measured in the blood. The capacity of LPS-stimulated PBMCs and monocytes to secrete IL-1β was assessed by using ELISA, and active IL-1β secretion was visualized by means of Western blotting. Real-time quantitative PCR was performed to assess cytokine gene expression. DNA was screened for variants of the MEFV, TNFRSF1A, MVK, and NLRP3 genes in a total of 57 patients with PFAPA syndrome. RESULTS: During a febrile attack, patients with PFAPA syndrome revealed significantly increased neutrophil counts, erythrocyte sedimentation rates, and C-reactive protein, serum amyloid A, myeloid-related protein 8/14, and S100A12 levels compared with those seen outside attacks. Stimulated PBMCs secreted significantly more IL-1β during an attack (during a febrile episode, 575 ± 88 pg/mL; outside a febrile episode, 235 ± 56 pg/mL; P < .001), and this was in the mature active p17 form. IL-1β secretion was inhibited by ZYVAD, a caspase inhibitor. Similar results were found for stimulated monocytes (during a febrile episode, 743 ± 183 pg/mL; outside a febrile episode, 227 ± 92 pg/mL; P < .05). Genotyping identified variants in 15 of 57 patients, with 12 NLRP3 variants, 1 TNFRSF1A variant, 4 MEFV variants, and 1 MVK variant. CONCLUSION: Our data strongly suggest that IL-1β monocyte production is dysregulated in patients with PFAPA syndrome. Approximately 20% of them were found to have NLRP3 variants, suggesting that inflammasome-related genes might be involved in this autoinflammatory syndrome.
Resumo:
E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with both activator (E2F1 and E2F3a) and repressor (E2F4) E2F proteins, properties that are conserved in insect cells. Human HCF-1-E2F interactions are versatile: their associations and binding to E2F-responsive promoters are cell-cycle selective, and HCF-1 displays coactivator properties when bound to the E2F1 activator and corepressor properties when bound to the E2F4 repressor. During the G1-to-S phase transition, HCF-1 recruits the mixed-lineage leukemia (MLL) and Set-1 histone H3 lysine 4 methyltransferases to E2F-responsive promoters and induces histone methylation and transcriptional activation. These results suggest that HCF-1 induces cell-cycle-specific transcriptional activation by E2F proteins to promote cell proliferation.
Resumo:
P-selectin glycoprotein ligand-1 (PSGL-1) mediates the capture (tethering) of free-flowing leukocytes and subsequent rolling on selectins. PSGL-1 interactions with endothelial selectins activate Src kinases and spleen tyrosine kinase (Syk), leading to α(L)β(2) integrin-dependent leukocyte slow rolling, which promotes leukocyte recruitment into tissues. In addition, but through a distinct pathway, PSGL-1 engagement activates ERK. Because ezrin, radixin and moesin proteins (ERMs) link PSGL-1 to actin cytoskeleton and because they serve as adaptor molecules between PSGL-1 and Syk, we examined the role of PSGL-1 ERM-binding sequence (EBS) on cell capture, rolling, and signaling through Syk and MAPK pathways. We carried out mutational analysis and observed that deletion of EBS severely reduced 32D leukocyte tethering and rolling on L-, P-, and E-selectin and slightly increased rolling velocity. Alanine substitution of Arg-337 and Lys-338 showed that these residues play a key role in supporting leukocyte tethering and rolling on selectins. Importantly, EBS deletion or Arg-337 and Lys-338 mutations abrogated PSGL-1-induced ERK activation, whereas they did not prevent Syk phosphorylation or E-selectin-induced leukocyte slow rolling. These studies demonstrate that PSGL-1 EBS plays a critical role in recruiting leukocytes on selectins and in activating the MAPK pathway, whereas it is dispensable to phosphorylate Syk and to lead to α(L)β(2)-dependent leukocyte slow rolling.
Resumo:
The activation of the transcription factor NF-kappaB often results in protection against apoptosis. In particular, pro-apoptotic tumor necrosis factor (TNF) signals are blocked by proteins that are induced by NF-kappaB such as TNFR-associated factor 1 (TRAF1). Here we show that TRAF1 is cleaved after Asp-163 when cells are induced to undergo apoptosis by Fas ligand (FasL). The C-terminal cleavage product blocks the induction of NF-kappaB by TNF and therefore functions as a dominant negative (DN) form of TRAF1. Our results suggest that the generation of DN-TRAF1 is part of a pro-apoptotic amplification system to assure rapid cell death.
Resumo:
ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.
Resumo:
Neuronal autophagy is enhanced in many neurological conditions, such as cerebral ischemia and traumatic brain injury, but its role in associated neuronal death is controversial, especially under conditions of apoptosis. We therefore investigated the role of autophagy in the apoptosis of primary cortical neurons treated with the widely used and potent pro-apoptotic agent, staurosporine (STS). Even before apoptosis, STS enhanced autophagic flux, as shown by increases in autophagosomal (LC3-II level, LC3 punctate labeling) and lysosomal (cathepsin D, LAMP1, acid phosphatase, β-hexasominidase) markers. Inhibition of autophagy by 3-methyladenine, or by lentivirally-delivered shRNAs against Atg5 and Atg7, strongly reduced the STS-induced activation of caspase-3 and nuclear translocation of AIF, and gave partial protection against neuronal death. Pan-caspase inhibition with Q-VD-OPH likewise protected partially against neuronal death, but failed to affect autophagy. Combined inhibition of both autophagy and caspases gave strong synergistic neuroprotection. The autophagy contributing to apoptosis was Beclin 1-independent, as shown by the fact that Beclin 1 knockdown failed to reduce it but efficiently reduced rapamycin-induced autophagy. Moreover the Beclin 1 knockdown sensitized neurons to STS-induced apoptosis, indicating a cytoprotective role of Beclin 1 in cortical neurons. Caspase-3 activation and pyknosis induced by two other pro-apoptotic stimuli, MK801 and etoposide, were likewise found to be associated with Beclin 1-independent autophagy and reduced by the knockdown of Atg7 but not Beclin 1. In conclusion, Beclin 1-independent autophagy is an important contributor to both the caspase-dependent and -independent components of neuronal apoptosis and may be considered as an important therapeutic target in neural conditions involving apoptosis.
Resumo:
Summary The Wnt signaling pathway plays an important role during development and also for maintaining tissue homeostasis due to its function in proliferation, differentiation and cell fate decisions. Wnt ligands bind to Frizzled receptors and activate a signaling cascade that results in the stabilization of β-Catenin, a key component of the pathway. β-Catenin translocates to the nucleus, where, together with a transcription factor of the Tcf/Lef family, it activates the expression of target genes. Legless and Pygopus are two recently discovered essential components of the Wnt pathway in Drosophila, which may mediate the nuclear import and retention of beta-Catenin and/or contribute directly to the activation of Wnt target genes. To address the function of Legless in the mouse, we have generated compound constitutive and conditional knockout alleles of the two homologues legless 'I (bc1-9) and 2. We have induced the deletion of legless in self-renewing tissues such as the gastrointestinal tract, the mammary gland and the skin during adulthood and constitutively in the embryo. The present thesis focused on the consequences of the inactivation of legless in epithelial homeostasis as well as in a regeneration model and its comparison to pygopus. Deletion of neither legless nor pygopus in the adult small intestine resulted in any apparent anomaly, contrasting expectations from the phenotype caused by over-expression of Dickkopf, a Wnt inhibitor (Pinto et al., 2003). These observations indicate that canonical Wnt signaling might not be indispensable for normal gastrointestinal epithelium homeostasis, or that, in this context, Legless and Pygopus are not essential components of the Wnt pathway. However, the regeneration of the colonic epithelium after DSS induced damage was markedly impaired in legless, but not in pygopus deficient mice. Thus, unlike in Drosophila, deletion of mammalian legless and pygopus resulted in different phenotypes, suggesting that Legless might interact with as yet unidentified partners in addition to Pygopus. Resumé La voie de signalisation Wnt joue un rôle important au cours du développement ainsi que pour le maintien de l' homéostase tissulaire due à sa fonction durant la prolifération, la différentiation et les décisions sur l'avenir des cellules. Les ligands de Wnt se lient aux récepteurs Frizzled et activent une cascade de signalisation résultant en la stabilisation de β-Catenin, un composant central de cette voie. β-Catenin est transloquée dans le noyau ou, avec l'aide des facteurs de transcription de la famille Tcf/lef, elle active la transcription des gènes cibles. Legless et Pygopus sont deux composants récemment découverts et essentiels de la voie de signalisation Wnt chez la Drosophile qui pourraient être des médiateurs de l'import et de la rétention nucléaire de bêta-catenin et/ou contribuer directement a l'activation des gènes cibles. Afin de comprendre la fonction de Legless chez la souris, nous avons généré simultanément les allèles « knock-out » constitutifs et conditionnels des deux homologues legless 1 (bc1-9) et 2. Nous avons induit la délétion de legless dans des tissus capables de s'auto renouveler comme le tract gastro-intestinal, la glande mammaire et la peau chez l'adulte et nous avons supprimé constitutivement legless chez l'embryon. La présente thèse est concentrée sur les conséquences de l'inactivation de legless au cours de l' homéostase épithéliale ainsi que dans un modèle de régénération et sur sa comparaison avec pygopus. Ni la délétion de legless ni celle de pygopus dans l'intestin adulte n'ont résulté en quelque anomalie, contrastant nos attentes provenant des phénotypes causes par la surexpression de Dickkpof, un inhibiteur de Wnt (Pinto et al., 2003). Ces observations indiquent que la voie de signalisation Wnt/β-Catenin pourrait ne pas être indispensable à l' homéostase normale du tract gastro-intestinal, ou que, dans ce contexte, Legless et Pygopus ne sont pas des composants essentiels de la vole Wnt. Cependant, la régénération de l'épithélium du colon après induction de son endommagement au DSS fut dramatiquement diminuée chez legless mais pas chez les souris mutantes pour pygopus. Ainsi, a la différence de chez la Drosophile, la délétion de legless et pygopus chez les mammifères a résulté en des phénotypes différents, suggérant que Legless pourrait interagir avec d'autres partenaires, encore non identifies, que Pygopus.
Resumo:
The Tax protein of the human T-cell leukemia virus type 1 (HTLV-1) has been implicated in human T-cell immortalization. The primary function of Tax is to transcriptionally activate the HTLV-1 promoter, but Tax is also known to stimulate expression of cellular genes. It has been reported to associate with several transcription factors, as well as proteins not involved in transcription. To better characterize potential cellular targets of Tax present in infected cells, a Saccharomyces cerevisiae two-hybrid screening was performed with a cDNA library constructed from the HTLV-1-infected MT2 cell line. From this study, we found 158 positive clones representing seven different cDNAs. We focused our attention on the cDNA encoding the transcription factor CREB-2. CREB-2 is an unconventional member of the ATF/CREB family in that it lacks a protein kinase A (PKA) phosphorylation site and has been reported to negatively regulate transcription from the cyclic AMP response element of the human enkephalin promoter. In this study, we demonstrate that CREB-2 cooperates with Tax to enhance viral transcription and that its basic-leucine zipper C-terminal domain is required for both in vitro and in vivo interactions with Tax. Our results confirm that the activation of the HTLV-1 promoter through Tax and factors of the ATF/CREB family is PKA independent.
Resumo:
The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p<0.05), IL-1beta-induced apoptosis (p<0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.
Resumo:
Cell adhesion to the extracellular matrix proteins occurs through interactions with integrins that bind to Arg-Gly-Asp (RGD) tripeptides, and syndecan-4, which recognizes the heparin-binding domain of other proteins. Both receptors trigger signaling pathways, including those that activate RhoGTPases such as RhoA and Rac1. This sequence of events modulates cell adhesion to the ECM and cell migration. Using a neuron-astrocyte model, we have reported that the neuronal protein Thy-1 engages αVβ3 integrin and syndecan-4 to induce RhoA activation and strong astrocyte adhesion to their underlying substrate. Thus, because cell-cell interactions and strong cell attachment to the matrix are considered antagonistic to cell migration, we hypothesized that Thy-1 stimulation of astrocytes should preclude cell migration. Here, we studied the effect of Thy-1 expressing neurons on astrocyte polarization and migration using a wound-healing assay and immunofluorescence analysis. Signaling molecules involved were studied by affinity precipitation, western blotting and the usage of specific antibodies. Intriguingly, Thy-1 interaction with its two receptors was found to increase astrocyte polarization and migration. The latter events required interactions of these receptors with both the RGD-like sequence and the heparin-binding domain of Thy-1. Additionally, prolonged Thy-1-receptor interactions inhibited RhoA activation while activating FAK, PI3K and Rac1. Therefore, sustained engagement of integrin and syndecan-4 with the neuronal surface protein Thy-1 induces astrocyte migration. Interestingly we identify here, a cell-cell interaction that despite initially inducing strong cell attachment, favors cell migration upon persistent stimulation by engaging the same signaling receptors and molecules as those utilized by the extracellular matrix proteins to stimulate cell movement.
Resumo:
Fas ligand (FasL) causes apoptosis of epidermal keratinocytes and triggers the appearance of spongiosis in eczematous dermatitis. We demonstrate here that FasL also aggravates inflammation by triggering the expression of proinflammatory cytokines, chemokines, and adhesion molecules in keratinocytes. In HaCaT cells and in reconstructed human epidermis (RHE), FasL triggered a NF-kappaB-dependent mRNA accumulation of inflammatory cytokines (tumor necrosis factor-alpha, IL-6, and IL-1beta), chemokines (CCL2/MCP-1, CXCL1/GROalpha, CXCL3/GROgamma, and CXCL8/IL-8), and the adhesion molecule ICAM-1. Oligomerization of Fas was required both for apoptosis and for gene expression. Inhibition of caspase activity abolished FasL-dependent apoptosis; however, it failed to suppress the expression of FasL-induced genes. Additionally, in the presence of caspase inhibitors, but not in their absence, FasL triggered the accumulation of CCL5/RANTES (regulated on activation normal T cell expressed and secreted) mRNA. Our findings identify a novel proinflammatory role of FasL in keratinocytes that is independent of caspase activity and is separable from apoptosis. Thus, in addition to causing spongiosis, FasL may play a direct role in triggering and/or sustaining inflammation in eczemas.
Resumo:
Fas, a death domain-containing member of the tumor necrosis factor receptor family and its ligand FasL have been predominantly studied with respect to their capability to induce cell death. However, a few studies indicate a proliferation-inducing signaling activity of these molecules too. We describe here a novel signaling pathway of FasL and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that triggers transcriptional activation of the proto-oncogene c-fos, a typical target gene of mitogenic pathways. FasL- and TRAIL-mediated up-regulation of c-Fos was completely dependent on the presence of Fas-associated death domain protein (FADD) and caspase-8, but caspase activity seemed to be dispensable as a pan inhibitor of caspases had no inhibitory effect. Upon overexpression of the long splice form of cellular FADD-like interleukin-1-converting enzyme (FLICE) inhibitory protein (cFLIP) in Jurkat cells, FasL- and TRAIL-induced up-regulation of c-Fos was almost completely blocked. The short splice form of FLIP, however, showed a rather stimulatory effect on c-Fos induction. Together these data demonstrate the existence of a death receptor-induced, FADD- and caspase-8-dependent pathway leading to c-Fos induction that is inhibited by the long splice form FLIP-L.
Resumo:
Death receptors, such as Fas and tumor necrosis factor-related apoptosis-inducing ligand receptors, recruit Fas-associated death domain and pro-caspase-8 homodimers, which are then autoproteolytically activated. Active caspase-8 is released into the cytoplasm, where it cleaves various proteins including pro-caspase-3, resulting in apoptosis. The cellular Fas-associated death domain-like interleukin-1-beta-converting enzyme-inhibitory protein long form (FLIP(L)), a structural homologue of caspase-8 lacking caspase activity because of several mutations in the active site, is a potent inhibitor of death receptor-induced apoptosis. FLIP(L) is proposed to block caspase-8 activity by forming a proteolytically inactive heterodimer with caspase-8. In contrast, we propose that FLIP(L)-bound caspase-8 is an active protease. Upon heterocomplex formation, a limited caspase-8 autoprocessing occurs resulting in the generation of the p43/41 and the p12 subunits. This partially processed form but also the non-cleaved FLIP(L)-caspase-8 heterocomplex are proteolytically active because they both bind synthetic substrates efficiently. Moreover, FLIP(L) expression favors receptor-interacting kinase (RIP) processing within the Fas-signaling complex. We propose that FLIP(L) inhibits caspase-8 release-dependent pro-apoptotic signals, whereas the single, membrane-restricted active site of the FLIP(L)-caspase-8 heterocomplex is proteolytically active and acts on local substrates such as RIP.
Resumo:
Cell death is achieved by two fundamentally different mechanisms: apoptosis and necrosis. Apoptosis is dependent on caspase activation, whereas the caspase-independent necrotic signaling pathway remains largely uncharacterized. We show here that Fas kills activated primary T cells efficiently in the absence of active caspases, which results in necrotic morphological changes and late mitochondrial damage but no cytochrome c release. This Fas ligand-induced caspase-independent death is absent in T cells that are deficient in either Fas-associated death domain (FADD) or receptor-interacting protein (RIP). RIP is also required for necrotic death induced by tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL). In contrast to its role in nuclear factor kappa B activation, RIP requires its own kinase activity for death signaling. Thus, Fas, TRAIL and TNF receptors can initiate cell death by two alternative pathways, one relying on caspase-8 and the other dependent on the kinase RIP.
Resumo:
Type 1 diabetes is characterized by the infiltration of activated leukocytes within the pancreatic islets, leading to beta-cell dysfunction and destruction. The exact role played by interferon-gamma, tumor necrosis factor (TNF)-alpha, and interleukin-1beta in this pathogenic process is still only partially understood. To study cytokine action at the cellular level, we are working with the highly differentiated insulin-secreting cell line, betaTc-Tet. We previously reported that it was susceptible to apoptosis induced by TNF-alpha, in combination with interleukin-1beta and interferon-gamma. Here, we report that cytokine-induced apoptosis was correlated with the activation of caspase-8. We show that in betaTc-Tet cells, overexpression of cFLIP, the cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein, completely abolished cytokine-dependent activation of caspase-8 and protected the cells against apoptosis. Furthermore, cFLIP overexpression increased the basal and interleukin-1beta-mediated transcriptional activity of nuclear factor (NF)-kappaB, whereas it did not change cytokine-induced inducible nitric oxide synthase gene transcription and nitric oxide secretion. The presence of cFLIP prevented the weak TNF-alpha-induced reduction in cellular insulin content and secretion; however, it did not prevent the decrease in glucose-stimulated insulin secretion induced by the combined cytokines, in agreement with our previous data demonstrating that interferon-gamma alone could induce these beta-cell dysfunctions. Together, our data demonstrate that overexpression of cFLIP protects mouse beta-cells against TNF-alpha-induced caspase-8 activation and apoptosis and is correlated with enhanced NF-kappaB transcriptional activity, suggesting that cFLIP may have an impact on the outcome of death receptor-triggered responses by directing the intracellular signals from beta-cell death to beta-cell survival.