945 resultados para ACCELERATING FRONTS
Resumo:
"NSF grant no. G-19697."
Resumo:
Includes indexes.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"Category No. UC-4 ; Chemistry ; TID-4500."
Resumo:
"NBS project 0603-11-3519."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliography.
Resumo:
The Accelerating Moment Release (AMR) preceding earthquakes with magnitude above 5 in Australia that occurred during the last 20 years was analyzed to test the Critical Point Hypothesis. Twelve earthquakes in the catalog were chosen based on a criterion for the number of nearby events. Results show that seven sequences with numerous events recorded leading up to the main earthquake exhibited accelerating moment release. Two occurred near in time and space to other earthquakes preceded by AM R. The remaining three sequences had very few events in the catalog so the lack of AMR detected in the analysis may be related to catalog incompleteness. Spatio-temporal scanning of AMR parameters shows that 80% of the areas in which AMR occurred experienced large events. In areas of similar background seismicity with no large events, 10 out of 12 cases exhibit no AMR, and two others are false alarms where AMR was observed but no large event followed. The relationship between AMR and Load-Unload Response Ratio (LURR) was studied. Both methods predict similar critical region sizes, however, the critical point time using AMR is slightly earlier than the time of the critical point LURR anomaly.
Resumo:
A statistical fractal automaton model is described which displays two modes of dynamical behaviour. The first mode, termed recurrent criticality, is characterised by quasi-periodic, characteristic events that are preceded by accelerating precursory activity. The second mode is more reminiscent of SOC automata in which large events are not preceded by an acceleration in activity. Extending upon previous studies of statistical fractal automata, a redistribution law is introduced which incorporates two model parameters: a dissipation factor and a stress transfer ratio. Results from a parameter space investigation indicate that a straight line through parameter space marks a transition from recurrent criticality to unpredictable dynamics. Recurrent criticality only occurs for models within one corner of the parameter space. The location of the transition displays a simple dependence upon the fractal correlation dimension of the cell strength distribution. Analysis of stress field evolution indicates that recurrent criticality occurs in models with significant long-range stress correlations. A constant rate of activity is associated with a decorrelated stress field.