991 resultados para 779900 Other (incl. Islands)
Resumo:
Carbonate sediments are dynamic three-dimensional environments where the surface layers are constantly moving and mixing due to the energy of the water column. It is also an environment of dynamic biological, chemical and physical interaction and modification. The biological community can actively influence changes to sediment characteristics and associated biochemistry. Bioturbation resulting from macrofaunal activity disrupts sediment structure and biochemical arrangements and reduces the critical shear forces required to move sediment particles, adding to the dynamic and complex physical and biogeochemical nature of the sediment. Laboratory studies using both planner optodes and glass needle microsensors were used to measure abiotic sediment characteristics such as the depth distribution and concentrations of PAR. The biochemical nature of coral reef sediment were also investigated, specifically the quantification and the distribution of dissolved oxygen within coarse and fine-grained sediments under regimes of light and darkness. Results highlighted the significant contribution microalgal productivity and bioturbation has on distribution of dissolved oxygen in the upper sediment layers. On the reef flat a shallow water lander system was employed to measure concentrations of O2, pH, S, Ca and temperature over periods of 24 to 48 hours in coarse and fine-grained sediments. Similarities between laboratory and in situ results where evident, however the in situ environment was more dynamic and the distribution and concentrations of dissolved oxygen were more complex and correlated to irradiance, temperature and biological activity. Microsensor technology provides us with the opportunity to study, at very high resolutions, the upper irradiated; photosynthetically active regions of aquatic sediments along with anoxic processes deeper in sub-euphotic regions of the sediments.
Resumo:
We address the relative importance of nutrient availability in relation to other physical and biological factors in determining plant community assemblages around Everglades Tree Islands (Everglades National Park, Florida, USA). We carried out a one-time survey of elevation, soil, water level and vegetation structure and composition at 138 plots located along transects in three tree islands in the Park’s major drainage basin. We used an RDA variance partitioning technique to assess the relative importance of nutrient availability (soil N and P) and other factors in explaining herb and tree assemblages of tree island tail and surrounded marshes. The upland areas of the tree islands accumulate P and show low N concentration, producing a strong island-wide gradient in soil N:P ratio. While soil N:P ratio plays a significant role in determining herb layer and tree layer community assemblage in tree island tails, nevertheless part of its variance is shared with hydrology. The total species variance explained by the predictors is very low. We define a strong gradient in nutrient availability (soil N:P ratio) closely related to hydrology. Hydrology and nutrient availability are both factors influencing community assemblages around tree islands, nevertheless both seem to be acting together and in a complex mechanism. Future research should be focused on segregating these two factors in order to determine whether nutrient leaching from tree islands is a factor determining community assemblages and local landscape pattern in the Everglades, and how this process might be affected by water management.
Resumo:
The freshwater Everglades is a complex system containing thousands of tree islands embedded within a marsh-grassland matrix. The tree island-marsh mosaic is shaped and maintained by hydrologic, edaphic and biological mechanisms that interact across multiple scales. Preserving tree islands requires a more integrated understanding of how scale-dependent phenomena interact in the larger freshwater system. The hierarchical patch dynamics paradigm provides a conceptual framework for exploring multi-scale interactions within complex systems. We used a three-tiered approach to examine the spatial variability and patterning of nutrients in relation to site parameters within and between two hydrologically defined Everglades landscapes: the freshwater Marl Prairie and the Ridge and Slough. Results were scale-dependent and complexly interrelated. Total carbon and nitrogen patterning were correlated with organic matter accumulation, driven by hydrologic conditions at the system scale. Total and bioavailable phosphorus were most strongly related to woody plant patterning within landscapes, and were found to be 3 to 11 times more concentrated in tree island soils compared to surrounding marshes. Below canopy resource islands in the slough were elongated in a downstream direction, indicating soil resource directional drift. Combined multi-scale results suggest that hydrology plays a significant role in landscape patterning and also the development and maintenance of tree islands. Once developed, tree islands appear to exert influence over the spatial distribution of nutrients, which can reciprocally affect other ecological processes.
Resumo:
Tree islands are an important structural component of many graminoid-dominated wetlands because they increase ecological complexity in the landscape. Tree island area has been drastically reduced with hydrologic modifications within the Everglades ecosystem, yet still little is known about the ecosystem ecology of Everglades tree islands. As part of an ongoing study to investigate the effects of hydrologic restoration on short hydroperiod marshes of the southern Everglades, we report an ecosystem characterization of seasonally flooded tree islands relative to locations described by variation in freshwater flow (i.e. locally enhanced freshwater flow by levee removal). We quantified: (1) forest structure, litterfall production, nutrient utilization, soil dynamics, and hydrologic properties of six tree islands and (2) soil and surface water physico-chemical properties of adjacent marshes. Tree islands efficiently utilized both phosphorus and nitrogen, but indices of nutrient-use efficiency indicated stronger P than N limitation. Tree islands were distinct in structure and biogeochemical properties from the surrounding marsh, maintaining higher organically bound P and N, but lower inorganic N. Annual variation resulting in increased hydroperiod and lower wet season water levels not only increased nitrogen use by tree species and decreased N:P values of the dominant plant species (Chrysobalanus icaco), but also increased soil pH and decreased soil temperature. When compared with other forested wetlands, these Everglades tree islands were among the most nutrient efficient, likely a function of nutrient immobilization in soils and the calcium carbonate bedrock. Tree islands of our study area are defined by: (1) unique biogeochemical properties when compared with adjacent short hydroperiod marshes and other forested wetlands and (2) an intricate relationship with marsh hydrology. As such, they may play an important and disproportionate role in nutrient and carbon cycling in Everglades wetlands. With the loss of tree islands that has occurred with the degradation of the Everglades system, these landscape processes may have been altered. With this baseline dataset, we have established a long-term ecosystem-scale experiment to follow the ecosystem trajectory of seasonally flooded tree islands in response to hydrologic restoration of the southern Everglades.
Resumo:
The Florida Everglades is an oligotrophic wetland system with tree islands as one of its most prominent landscape features. Total soil phosphorus concentrations on tree islands can be 6 to 100 times greater than phosphorus levels in the surrounding marshes and sloughs, making tree islands nutrient hotspots. Several mechanisms are believed to redistribute phosphorus to tree islands: subsurface water flows generated by evapotranspiration of trees, higher deposition rates of dry fallout, deposition of guano by birds and other animals, groundwater upwelling, and bedrock mineralization by tree exudates. A conceptual model is proposed, in which the focused redistribution of limiting nutrients, especially phosphorus, onto tree islands controls their maintenance and expansion. Because of increased primary production and peat accretion rates, the redistribution of phosphorus can result in an increase in both tree island elevation and size. Human changes to hydrology have greatly decreased the number and size of tree islands in parts of the Everglades. The proposed model suggests that the preservation of existing tree islands, and ultimately of the Everglades landscape, requires the maintenance of these phosphorus redistribution mechanisms.
Resumo:
It has been observed that Viking Age gold finds in Scandinavia and Britain are frequently associated with watery environments and may represent ritual or votive depositions. There is also evidence, literary and archaeological, for the ritual deposition of some silver hoards in the Viking world. This paper considers the evidence of those Viking Age gold and silver hoards and single finds from Ireland that derive from watery locations, including crannogs and their environs. It is noted that all recorded gold hoards, with one exception, have an apparent association with water or watery places and thus conform to the patterns noted elsewhere. Most of the crannog finds, which are invariably of silver, are from the midland region, and it is noted that a high proportion of them contain ingots and hack-silver and are thus most probably economic rather than ritual in function. It is suggested that these types of hoards evidence a close economic relationship between the Hiberno-Scandinavians of Dublin and the Southern Uí Néill rulers of this area. Some of the remaining silver hoards—from bogs, rivers, lakes, small islands and shorelines—which vary in terms of their contents, with both complete ornaments and hack-silver being represented, may have been ritually deposited, but this is difficult to establish with any degree of certainty. A general discussion of ritual hoarding is presented, and it is concluded that this practice may have been more commonplace than has generally been accepted to date and that some, at least, of the ‘watery’ finds from Ireland were indeed deposited in a ritual context.
Resumo:
The best-preserved early church site on the Faroe Islands, locally known as Bønhústoftin (English: prayer-house ruin), is located in the settlement of Leirvík on the island of Eysturoy. Although the site is well known it has neither been the subject of a proper archaeological survey nor has it ever been included in discussions of the nature of early Christianity in the Faroe Islands. The site was recently surveyed and described by the authors, and the results of this work are presented here. Other sites of related type, both in the Faroe Islands and elsewhere, are identified and the archaeological and historical contexts within which these sites should be considered, including the evidence from Toftanes and Skúvoy, are discussed.
Resumo:
The occurrence of microbialites in post-glacial coral reefs has been interpreted to reflect an ecosystem response to environmental change. The greater thickness of microbialites in reefs with a volcanic hinterland compared to thinner microbial crusts in reefs with a non-volcanic hinterland led to the suggestion that fertilization of the reefal environment by chemical weathering of volcanic rocks stimulated primary productivity and microbialite formation. Using a molecular and isotopic approach on reef-microbialites from Tahiti (Pacific Ocean), it was recently shown that sulfate-reducing bacteria favored the formation of microbial carbonates. To test if similar mechanisms induced microbialite formation in other reefs as well, the Tahitian microbialites are compared with similar microbialites from coral reefs off Vanuatu (Pacific Ocean), Belize (Caribbean Sea, Atlantic Ocean), and the Maldives (Indian Ocean) in this study. The selected study sites cover a wide range of geological settings, reflecting variable input and composition of detritus. The new lipid biomarker data and stable sulfur isotope results confirm that sulfate-reducing bacteria played an intrinsic role in the precipitation of microbial carbonate at all study sites, irrespective of the geological setting. Abundant biomarkers indicative of sulfate reducers include a variety of terminally-branched and mid chain-branched fatty acids as well as mono-O-alkyl glycerol ethers. Isotope evidence for bacterial sulfate reduction is represented by low d34S values of pyrite (-43 to -42 per mill) enclosed in the microbialites and, compared to seawater sulfate, slightly elevated d34S and d18O values of carbonate-associated sulfate (21.9 to 22.2 per mill and 11.3 to 12.4 per mill, respectively). Microbialite formation took place in anoxic micro-environments, which presumably developed through the fertilization of the reef environment and the resultant accumulation of organic matter including bacterial extracellular polymeric substances (EPS), coral mucus, and marine snow in cavities within the coral framework. ToF-SIMS analysis reveals that the dark layers of laminated microbialites are enriched in carbohydrates, which are common constituents of EPS and coral mucus. These results support the hypothesis that bacterial degradation of EPS and coral mucus within microbial mats favored carbonate precipitation. Because reefal microbialites formed by similar processes in very different geological settings, this comparative study suggests that a volcanic hinterland is not required for microbialite growth. Yet, detrital input derived from the weathering of volcanic rocks appears to be a natural fertilizer, being conductive for the growth of microbial mats, which fosters the development of particularly abundant and thick microbial crusts.
Resumo:
Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications.
Resumo:
[EN] Marine turtles commonly carry diverse forms of epizoa on their shells. The occurrence of a particular species may ultimately help to clarify certain questions about sea turtle natural life history. This paper gives a detailed and comparative list of epizoic species found on two populations of macaronesian loggerheads: pelagic and juveniles living around the Canary Islands and mature females nesting in Boavista Island, Cabo Verde. For the epizoic flora, the most important genera founded is Polysiphonia (Rhodophiceae); P. carettia for the pelagics and Polysiphonia sp. for the nesting animals.
Resumo:
[EN] Since the beginning of the 1990's, the Wild Fauna Recovery Center in Gran Canaria Canary Islands, Spain) has received a large number of injured animals for recovery. Apart from birds and mammals, a considerable number of sea turtles representing different species are gathered each year. During the last five years (1999-2003), more than 100 turtles were sheltered annually; more than 80% successfully recovered and were released.
Resumo:
[EN] Sea turtles exhibit a strong natal homing associated with a high nesting site philopatry. Mark-recapture and genetic studies confirm these patterns suggesting differences among and within species. In the present study, we have analysed the degree of nest site fidelity of a loggerhead population nesting on the islands of Cape Verde and have evaluated the existence of intrapopulational variability in this trait. The loggerhead is the only sea turtle species that nests in Cape Verde, and 15,000–25,000 nests per season have been estimated for the whole archipelago.
Resumo:
[EN] The recently discovered nesting colony of Caretta caretta at the island ofBoavista (Cape Verde Islands, West Africa, FIGURE 1) is being subject ofresearch since 1998. A total number of 1,391 different females have been tagged during the 1998, 1999 and 2000 nesting seasons. Although more data are needed, these islands may represent one ofthe most important populations for the species in the North Atlantic (Brongersma, 1982; Ross, 1995; López-Jurado & Andreu, 1998). The present study shows a comparative analysis between the morphometric data collected at Boavista during the last 2000 nesting season and those recorded in the 1998 and 1999 seasons. These data have also been contrasted with those from other loggerhead nesting populations around the world for possible differences.
Resumo:
[EN] The hawksbill sea turtle (Eretmochelys imbricata) is a circumglobal tropical species listed as Critically Endangered by the IUCN. While it is known that at least one stock occurs around the rookeries of São Tome and Principe and Bioko Islands, the eastern Atlantic remains genetically unexplored. We present the first analysis of mitochondrial DNA (mtDNA) sequences (n = 28) of hawksbill juveniles in a foraging aggregation at the Cape Verde Islands, an archipelago located in the eastern Atlantic. The mean size (minimun curve carapace length) of the studied individuals was 42.45 cm.