846 resultados para 770506 Remnant vegetation and protected conservation areas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a new bio-indicator method for assessing wetland ecosystem health: as such, the study is particularly relevant to current legislation such as the EU Water Framework Directive, which provides a baseline of the current status Of Surface waters. Seven wetland sites were monitored across northern Britain, with model construction data for predicting, eco-hydroloplical relationships collected from five sites during 1999, Two new sites and one repeat site were monitored during 2000 to provide model test data. The main growing season for the vegetation, and hence the sampling period, was May-August during both years. Seasonal mean concentrations of nitrate (NO3-) in surface and soil water samples during 1999 ranged from 0.01 to 14.07 mg N 1(-1), with a mean value of 1.01 mg N 1(-1). During 2000, concentrations ranged from trace level (<0.01 m- N 1(-1)) to 9.43 mg N 1(-1), with a mean of 2.73 mg N 1(.)(-1) Surface and soil-water nitrate concentrations did not influence plant species composition significantly across representative tall herb fen and mire communities. Predictive relationships were found between nitrate concentrations and structural characteristics of the wetland vegetation, and a model was developed which predicted nitrate concentrations from measures of plant diversity, canopy structure and density of reproductive structures. Two further models, which predicted stem density and density of reproductive structures respectively, utilised nitrate concentration as one of the independent predictor variables. Where appropriate, the models were tested using data collected during 2000. This approach is complementary to species-based monitoring, representing a useful and simple too] to assess ecological status in target wetland systems and has potential for bio-indication purposes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53′N, 36°29.55′E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18–14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1–14.5 kyr BP), indicated by δ18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative δ13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5–12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative δ13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7–8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5–5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

•In current models, the ecophysiological effects of CO2 create both woody thickening and terrestrial carbon uptake, as observed now, and forest cover and terrestrial carbon storage increases that took place after the last glacial maximum (LGM). Here, we aimed to assess the realism of modelled vegetation and carbon storage changes between LGM and the pre-industrial Holocene (PIH). •We applied Land Processes and eXchanges (LPX), a dynamic global vegetation model (DGVM), with lowered CO2 and LGM climate anomalies from the Palaeoclimate Modelling Intercomparison Project (PMIP II), and compared the model results with palaeodata. •Modelled global gross primary production was reduced by 27–36% and carbon storage by 550–694 Pg C compared with PIH. Comparable reductions have been estimated from stable isotopes. The modelled areal reduction of forests is broadly consistent with pollen records. Despite reduced productivity and biomass, tropical forests accounted for a greater proportion of modelled land carbon storage at LGM (28–32%) than at PIH (25%). •The agreement between palaeodata and model results for LGM is consistent with the hypothesis that the ecophysiological effects of CO2 influence tree–grass competition and vegetation productivity, and suggests that these effects are also at work today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossil pollen, ancient lake sediments and archaeological evidence from Africa indicate that the Sahel and Sahara regions were considerably wetter than today during the early to middle Holocene period, about 12,000 to 5,000 years ago1–4. Vegetation associated with the modern Sahara/Sahel boundary was about 5° farther north, and there were more and larger lakes between 15 and 30° N. Simulations with climate models have shown that these wetter conditions were probably caused by changes in Earth's orbital parameters that increased the amplitude of the seasonal cycle of solar radiation in the Northern Hemisphere, enhanced the land-ocean temperature contrast, and thereby strengthened the African summer monsoon5–7. However, these simulations underestimated the consequent monsoon enhancement as inferred from palaeorecords4. Here we use a climate model to show that changes in vegetation and soil may have increased the climate response to orbital forcing. We find that replacing today's orbital forcing with that of the mid-Holocene increases summer precipitation by 12% between 15 and 22° N. Replacing desert with grassland, and desert soil with more loamy soil, further enhances the summer precipitation (by 6 and 10% respectively), giving a total precipitation increase of 28%. When the simulated climate changes are applied to a biome model, vegetation becomes established north of the current Sahara/Sahel boundary, thereby shrinking the area of the Sahara by 11% owing to orbital forcing alone, and by 20% owing to the combined influence of orbital forcing and the prescribed vegetation and soil changes. The inclusion of the vegetation and soil feedbacks thus brings the model simulations and palaeovegetation observations into closer agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This multiproxy study on SE Black Sea sediments provides the first detailed reconstruction of vegetation and environmental history of Northern Anatolia between 134 and 119 ka. Here, the glacial–interglacial transition is characterized by several short-lived alternating cold and warm events preceding a meltwater pulse (~ 130.4–131.7 ka). The latter is reconstructed as a cold arid period correlated to Heinrich event 11. The initial warming is evidenced at ~ 130.4 ka by increased primary productivity in the Black Sea, disappearance of ice-rafted detritus, and spreading of oaks in Anatolia. A Younger Dryas-type event is not identifiable. The Eemian vegetation succession corresponds to the main climatic phases in Europe: i) the Quercus–Juniperus phase (128.7–126.4 ka) indicates a dry continental climate; ii) the Ostrya–Corylus–Quercus–Carpinus phase (126.4–122.9 ka) suggests warm summers, mild winters, and high year-round precipitation; iii) the Fagus–Carpinus phase (122.9–119.5 ka) indicates cooling and high precipitation; and iv) increasing Pinus at ~ 121 ka marks the onset of cooler/drier conditions. Generally, pollen reconstructions suggest altitudinal/latitudinal migrations of vegetation belts in Northern Anatolia during the Eemian caused by increased transport of moisture. The evidence for the wide distribution of Fagus around the Black Sea contrasts with the European records and is likely related to climatic and genetic factors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allergy to components of the diet is followed by gut inflammation which in children, sometimes progress to mucosal lesions and anaphylaxis. In newborns suffering of cow`s milk allergy, bloody stools, rectal. bleeding and ulcerations are found. The rat systemic anaphylaxis is a suitable model to study the intestinal lesions associated to allergy. In the present study we used this model to investigate some mechanisms involved. We found that 15 min after antigen challenge of sensitized rats, hemorrhagic lesions develop in the small intestine. The lesions were more severe in jejunum and ileum compared to duodenum. Pretreatment of the rats with a platelet-activating factor-receptor antagonist (WEB-2170) reduced the lesions whereas inhibition of endogenous nitric oxide by L-NAME, greatly increased the hemorrhagic lesions and mortality. Both, lesions and mortality were reversed by L-arginine. The hemorrhagic lesions were also significantly reduced by the mast cell stabilizers, disodium cromoglycate and ketotifen as well as by neutrophils depletion (with anti-PMN antibodies) or inhibition of selectin binding (by treatment with fucoidan). Thus, the intestinal hemorrhagic lesions in this model are dependent on ptatelet-activating factor, mast cell granule-derived mediators and neutrophils. Endogenous nitric oxide and supplementation with L-arginine has a protective role, reducing the lesions and preventing mortality. These results contributed to elucidate mechanisms involved in intestinal lesions which could be of relevance to human small bowel injury associated to allergy. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this article is to contribute to the discussion of the financial aspects of dollarization and optimum currency areas. Based on the model of self-fulfilling debt crisis developed by Cole and Kehoe [4], it is possible to evaluate the comparative welfare of economies, which either keep their local currency and an independent monetary policy, join a monetary union or adopt dollarization. In the two former monetary regimes, governments can issue debt denominated, respectively, in local and common currencies, which is completely purchased by national consumers. Given this ability, governments may decide to impose an inflation tax on these assets and use the revenues so collected to avoid an external debt crises. While the country that issues its own currency takes this decision independently, a country belonging to a monetary union depends on the joint decision of all member countries about the common monetary policy. In this way, an external debt crises may be avoided under the local and common currency regimes, if, respectively, the national and the union central banks have the ability to do monetary policy, represented by the reduction in the real return on the bonds denominated in these currencies. This resource is not available under dollarization. In a dollarized economy, the loss of control over national monetary policy does not allow adjustments for exogenous shocks that asymmetrically affect the client and the anchor countries, but credibility is strengthened. On the other hand, given the ability to inflate the local currency, the central bank may be subject to the political influence of a government not so strongly concerned with fiscal discipline, which reduces the welfare of the economy. In a similar fashion, under a common currency regime, the union central bank may also be under the influence of a group of countries to inflate the common currency, even though they do not face external restrictions. Therefore, the local and common currencies could be viewed as a way to provide welfare enhancing bankruptcy, if it is not abused. With these peculiarities of monetary regimes in mind, we simulate the levels of economic welfare for each, employing recent data for the Brazilian economy.