938 resultados para 770405 Physical and chemical conditions
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, N-14/N-15, O-16/O-18, C-12/C-13, and S-32/S-34 ratios in cometary grains and gases, and discuss their cosmogonic implications. The review includes analyses of potential cometary material available in collections on Earth, recent measurements achieved with the Herschel Space Observatory, large optical telescopes, and Rosetta, as well as recent results obtained from models of chemical-dynamical deuterium fractionation in the early solar nebula. Prospects for future measurements are presented.
Resumo:
The ecology of arctic lakes is strongly influenced by climate-generated variations in snow coverage and by the duration of the ice-free period, which, in turn, affect the physical and chemical conditions of the lakes (Wrona et al., 2005, http://www.acia.uaf.edu/PDFs/ACIA_Science_Chapters_Final/ACIA_Ch08_Final.pdf). Most arctic lakes are characterised by a long period (8-10 months) of ice-cover, cold water and low algal biomass. The water temperature and nutrient concentrations, and most probably the nutrient input from the catchments, are closely related to the duration of snow- and ice-cover in the lakes. In years when the ice-out is late, - that is, in late July, - phytoplankton photosynthesis is limited by the lack of light and nutrients. Less food is then available to the next link in the food chain, such as copepods and daphnids, with implication on their growth rates.
Resumo:
For the managers of a region as large as the Great Barrier Reef, it is a challenge to develop a cost effective monitoring program, with appropriate temporal and spatial resolution to detect changes in water quality. The current study compares water quality data (phytoplankton abundance and water clarity) from remote sensing with field sampling (continuous underway profiles of water quality and fixed site sampling) at different spatial scales in the Great Barrier Reef north of Mackay (20 degrees S). Five transects (20-30 km long) were conducted from clean oceanic water to the turbid waters adjacent to the mainland. The different data sources demonstrated high correlations when compared on a similar spatial scale (18 fixed sites). However, each data source also contributed unique information that could not be obtained by the other techniques. A combination of remote sensing, underway sampling and fixed stations will deliver the best spatial and temporal monitoring of water quality in the Great Barrier Reef. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Commercial dodecylbenzene cable fluid was aged at temperatures of 105 and 135 degrees C in dry oxygen-free nitrogen. In addition, selected samples were aged at 135 degrees C under sealed conditions where air was excluded from the headspace above the oil. A variety of analytical techniques, such as ultra-violet visible and infra-red spectroscopy, acid number and water content measurements, were then used to characterize the aged oils. In addition, their electrical properties were assessed by dielectric spectroscopy. Compared with ageing in air, the ageing rate was reduced significantly and, as expected, no major oxidation peaks were detected in the infrared spectrometer. Significantly, very little absorbance at 680 nm ("red absorbers") was detected in samples aged with copper and, consequentially, no large increases in dielectric loss were recorded within the ageing times considered here. This study compliments previous investigations on cable fluid and 1-phenyldodecane aged in air and show that the same ageing indicators are valid in oils aged under conditions which more closely resemble those found in high voltage plant.
Resumo:
Climatic variations influence formation and maturation of coffee grains by altering their intrinsic characteristics, which call allow for several types of coffee qualities, including the potential for production of special coffee. This study was carried out to verify the effect of environmental conditions and crop cultivation on chemical composition and their consequences in cup quality of coffees from region of Jesuitas, Parana State. During the same crop season this study was accomplished (2002-2003), cup quality was evaluated among the producers in several coffee-growing municipalities in Parana State. It was observed that 86% of samples were classified simply as ""soft"" (smooth flavor) or ""hard"" (bolder flavor), and 14% were classified as rioysh/rio (strong unpleasant taste). The results concluded that the practices adopted by producers, who have collaborated with the study, reflected positively oil the final cup quality, when compared to the overall quality results in the State. The climatic conditions and practices of crop management and harvest ill the Jesuitas region made for bolder coffee with low acidity, comparable to high quality coffees produced in Brazil and abroad.
Resumo:
The present study aimed to evaluate the chemical properties of green corn, grown in both organic and conventional farming systems, using a completely randomized factorial design. Four corn varieties (AG 1051, BR 106, SWB 551 and VIVI) of green corn kernels were evaluated for color, proximate composition, total calories, carotenoids and bioactive amines. The farming system affected some chemical and physical characteristics of green corn, but this effect was dependent upon variety. In general, organic green corn kernels were reddish (a* color component) and had higher levels of β-carotene compared to the conventional ones, suggesting that these characteristics are related. Moreover, organic green corn had higher levels of total carbohydrates and total energy compared to conventional varieties. On the other hand, crude fiber levels were higher in conventional grains - an unexpected result that deserves further investigation. Finally, the levels of cadaverine and spermine bioactive amines were not affected either by the corn variety or by the farming system.
Resumo:
This work studies the impact of two traditional Romanian treatments, Red Petroleum and Propolis, in terms of real efficiency and consequence on the wooden artifacts. The application of these solutions is still a widely adopted and popular technique in preservative conservation but the impact of these solutions is not well known. It is important to know the effect of treatments on chemical-physical and structural characteristics of the artifacts, not only for understanding the influence on present conditions but also for foreseeing the future behavior. These treatments with Romanian traditional products are compared with a commercial antifungal product, Biotin R, which is utilized as reference to control the effectiveness of Red Petroleum and Propolis. Red Petroleum and Propolis are not active against mould while Biotin R is very active. Mould attack is mostly concentrated in the painted layer, where the tempera, containing glue and egg, enhance nutrition availability for moulds. Biotin R, even if is not a real insecticide but a fungicide, was the most active product against insect attack of the three products, followed by Red Petroleum, Propolis and untreated reference. As for colour, it did not change so much after the application of Red Petroleum and Biotin R and the colour difference was almost not perceptible. On the contrary, Propolis affected the colour a lot. During the exposure at different RH, the colour changes significantly at 100% RH at equilibrium and this is mainly due to the mould attack. Red Petroleum penetrates deeply into wood, while Propolis does not penetrate and remains only on the surface. However, Red Petroleum does not interact chemically with wood substance and it is easy volatilized in oven-dry condition. On the contrary Propolis interacts chemically with wood substance and hardly volatilized, even in oven-dry condition and consequently Propolis remains where it penetrated, mostly on the surface. Treatment by immersion has impact on wood physical parameters while treatment by brushing does not have significant impact. Especially Red Petroleum has an apparent impact on moisture content (MC) due to the penetration of solution, while Propolis does not penetrate so much and remains only on surface therefore Propolis does not have so much impact as Red Petroleum. However, if the weight of the solution penetrated in wood is eliminated, there is not significant difference in MC between treated and untreated samples. Considering physical parameters, dimensional stability is an important parameter. The variation of wood moisture content causes shrinkages/swelling of the wood that polychrome layer can only partially follow. The dimension of wooden supports varied under different moisture conditioning; the painted layer cannot completely follow this deformation, and consequently a degradation and deterioration caused by detachment, occurs. That detachment affects the polychrome stratification of the panel painting and eventually the connections between the different layer compositions of the panel painting.
Resumo:
The purpose of this thesis is the atomic-scale simulation of the crystal-chemical and physical (phonon, energetic) properties of some strategically important minerals for structural ceramics, biomedical and petrological applications. These properties affect the thermodynamic stability and rule the mineral-environment interface phenomena, with important economical, (bio)technological, petrological and environmental implications. The minerals of interest belong to the family of phyllosilicates (talc, pyrophyllite and muscovite) and apatite (OHAp), chosen for their importance in industrial and biomedical applications (structural ceramics) and petrophysics. In this thesis work we have applicated quantum mechanics methods, formulas and knowledge to the resolution of mineralogical problems ("Quantum Mineralogy”). The chosen theoretical approach is the Density Functional Theory (DFT), along with periodic boundary conditions to limit the portion of the mineral in analysis to the crystallographic cell and the hybrid functional B3LYP. The crystalline orbitals were simulated by linear combination of Gaussian functions (GTO). The dispersive forces, which are important for the structural determination of phyllosilicates and not properly con-sidered in pure DFT method, have been included by means of a semi-empirical correction. The phonon and the mechanical properties were also calculated. The equation of state, both in athermal conditions and in a wide temperature range, has been obtained by means of variations in the volume of the cell and quasi-harmonic approximation. Some thermo-chemical properties of the minerals (isochoric and isobaric thermal capacity) were calculated, because of their considerable applicative importance. For the first time three-dimensional charts related to these properties at different pressures and temperatures were provided. The hydroxylapatite has been studied from the standpoint of structural and phonon properties for its biotechnological role. In fact, biological apatite represents the inorganic phase of vertebrate hard tissues. Numerous carbonated (hydroxyl)apatite structures were modelled by QM to cover the broadest spectrum of possible biological structural variations to fulfil bioceramics applications.