870 resultados para 760101 Global climate change adaptation measures
Resumo:
The increasing threat of global climate change is predicted to have immense influences on ecosystems worldwide, but could be particularly severe to vulnerable wetland environments such as the Everglades. This work investigates the impact global climate change could have on the hydrologic and vegetative makeup of Everglades National Park (ENP) under forecasted emissions scenarios. Using a simple stochastic model of aboveground water levels driven by a fluctuating rainfall input, we link across ENP a location's mean depth and percent time of inundation to the predicted changes in precipitation from climate change. Changes in the hydrologic makeup of ENP are then related to changes in vegetation community composition through the use of relationships developed between two publically available datasets. Results show that under increasing emissions scenarios mean annual precipitation was forecasted to decrease across ENP leading to a marked hydrologic change across the region. Namely, areas were predicted to be shallower in average depth of standing water and inundated less of the time. These hydrologic changes in turn lead to a shift in ENP's vegetative makeup, with xeric vegetative communities becoming more numerous and hydric vegetative communities becoming scarcer. Noticeably, the most widespread of vegetative communities, sawgrass, decreases in abundance under increasing emissions scenarios. These results are an important indicator of the effects climate change may have on the Everglades region and raise important management implications for those seeking to restore this area to its historical hydrologic and vegetative condition.
Resumo:
Awareness of extreme high tide flooding in coastal communities has been increasing in recent years, reflecting growing concern over accelerated sea level rise. As a low-lying, urban coastal community with high value real estate, Miami often tops the rankings of cities worldwide in terms of vulnerability to sea level rise. Understanding perceptions of these changes and how communities are dealing with the impacts reveals much about vulnerability to climate change and the challenges of adaptation. ^ This empirical study uses an innovative mixed-methods approach that combines ethnographic observations of high tide flooding, qualitative interviews and analysis of tidal data to reveal coping strategies used by residents and businesses as well as perceptions of sea level rise and climate change, and to assess the relationship between measurable sea levels and perceptions of flooding. I conduct a case study of Miami Beach's storm water master planning process which included sea level rise projections, one of the first in the nation to do so, that reveals the different and sometimes competing logics of planners, public officials, activists, residents and business interests with regards to climate change adaptation. By taking a deeply contextual account of hazards and adaptation efforts in a local area I demonstrate how this approach can be effective at shedding light on some of the challenges posed by anthropogenic climate change and accelerated rates of sea level rise. ^ The findings highlight challenges for infrastructure planning in low-lying, urban coastal areas, and for individual risk assessment in the context of rapidly evolving discourse about the threat of sea level rise. Recognition of the trade-offs and limits of incremental adaptation strategies point to transformative approaches, at the same time highlighting equity concerns in adaptation governance and planning. This new impact assessment method contributes to the integration of social and physical science approaches to climate change, resulting in improved understanding of socio-ecological vulnerability to environmental change.^
Resumo:
Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.
Resumo:
Background: The relationship between mental health and climate change are poorly understood. Participatory methods represent ethical, feasible, and culturally-appropriate approaches to engage community members for mental health promotion in the context of climate change. Aim: Photovoice, a community-based participatory research methodology uses images as a tool to deconstruct problems by posing meaningful questions in a community to find actionable solutions. This community-enhancing technique was used to elicit experiences of climate change among women in rural Nepal and the association of climate change with mental health. Subjects and methods: Mixed-methods, including in-depth interviews and self-report questionnaires, were used to evaluate the experience of 10 women participating in photovoice. Quantitative tools included Nepali versions of Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI) and a resilience scale. Results: In qualitative interviews after photovoice, women reported climate change adaptation and behavior change strategies including environmental knowledge-sharing, group mobilization, and increased hygiene practices. Women also reported beneficial effects for mental health. The mean BDI score prior to photovoice was 23.20 (SD=9.00) and two weeks after completion of photovoice, the mean BDI score was 7.40 (SD=7.93), paired t-test = 8.02, p<.001, n=10. Conclusion: Photovoice, as a participatory method, has potential to inform resources, adaptive strategies and potential interventions to for climate change and mental health.
Resumo:
El 5º Informe del IPCC (Panel Intergubernamental de Cambio Climático, 2014) señala que el turismo será una de las actividades económicas que mayores efectos negativos experimentará en las próximas décadas debido al calentamiento térmico del planeta. En España, el turismo es una fuente principal de ingresos y de creación de puestos de trabajo en su economía. De ahí que sea necesaria la puesta en marcha de medidas de adaptación a la nueva realidad climática que, en nuestro país, va a suponer cambios en el confort climático de los destinos e incremento de extremos atmosféricos. Frente a los planes de adaptación al cambio climático en la actividad turística, elaborados por los gobiernos estatal y regional, que apenas se han desarrollado en España, la escala local muestra interesantes ejemplos de acciones de adaptación al cambio climático, desarrolladas tanto por los municipios (energía, transporte, vivienda, planificación urbanística) como por la propia empresa turística (hoteles, campings, apartamentos). Medidas de ahorro de agua y luz, fomento del transporte público y de las energías limpias, creación de zonas verdes urbanas y adaptación a los extremos atmosféricos destacan como acciones de mitigación del cambio climático en los destinos turísticos principales de nuestro país.
Resumo:
Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1) intergenerational observations of change were common among interview participants in all four communities, (2) older generations observed more overall change than younger generations interviewed by us, and (3) how change was perceived varied between generations. We defined “observations” as the specific examples of environmental and weather change that were described, whereas “perceptions” referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.
Resumo:
When something unfamiliar emerges or when something familiar does something unexpected people need to make sense of what is emerging or going on in order to act. Social representations theory suggests how individuals and society make sense of the unfamiliar and hence how the resultant social representations (SRs) cognitively, emotionally, and actively orient people and enable communication. SRs are social constructions that emerge through individual and collective engagement with media and with everyday conversations among people. Recent developments in text analysis techniques, and in particular topic modeling, provide a potentially powerful analytical method to examine the structure and content of SRs using large samples of narrative or text. In this paper I describe the methods and results of applying topic modeling to 660 micronarratives collected from Australian academics / researchers, government employees, and members of the public in 2010-2011. The narrative fragments focused on adaptation to climate change (CC) and hence provide an example of Australian society making sense of an emerging and conflict ridden phenomena. The results of the topic modeling reflect elements of SRs of adaptation to CC that are consistent with findings in the literature as well as being reasonably robust predictors of classes of action in response to CC. Bayesian Network (BN) modeling was used to identify relationships among the topics (SR elements) and in particular to identify relationships among topics, sentiment, and action. Finally the resulting model and topic modeling results are used to highlight differences in the salience of SR elements among social groups. The approach of linking topic modeling and BN modeling offers a new and encouraging approach to analysis for ongoing research on SRs.
Resumo:
Effective interaction between climate science and policy is important for moving climate negotiations forward to reach an ambitious global climate change deal. Lack of progress in the United Nations Framework Convention on Climate Change (UNFCCC) negotiations during recent years is a good reason for taking a closer look at the process of climate science–policy interaction to identify and eliminate existing shortcomings hindering climate policymaking. This paper examines the current state of climate science–policy interaction and suggests ways to integrate scientific input into the UNFCCC process more effectively. Suggestions relate to improvement in institutional structures, processes and procedures of the UNFCCC and the Intergovernmental Panel on Climate Change (IPCC), quality of scientific input, credibility of scientific message and public awareness of climate change.
Resumo:
Editor's introduction to the Special Edition on the Economics of Climate Change Adaptation in Coastal Areas
Resumo:
This paper is an analysis of emic versus etic approaches to climate change resiliency, taking as a case study the traditional ceremony performed by farmers in eastern Flores, Indonesia to rid their fields of rats. This paper begins by providing a theoretical framework discussion on the dominant etic and emic academic research on monsoons and climate change impacts on agriculture. The rat ceremony performed in villages throughout East Flores is a local custom used to rid agricultural fields of pests—often rats—that come from the surrounding forests to feed on the agricultural crops when the rains become erratic. This paper argues that analyzing the rat ceremony through an emic lens allows for better future resiliency to monsoon shifts due to climate change. It is argued that the rat ceremony demonstrates a way in which community resiliency is strengthened by an adaptive approach that supports an already existing community ceremony that emphasizes two essential tenets: community solidarity and coexistence with nature. Both tenets directly promote community resiliency. An explicit emphasis on emic approaches to climate change challenges could help re-define how resiliency is understood and supported within vulnerable communities such as rural villages.
Resumo:
Crop production is inherently sensitive to fluctuations in weather and climate and is expected to be impacted by climate change. To understand how this impact may vary across the globe many studies have been conducted to determine the change in yield of several crops to expected changes in climate. Changes in climate are typically derived from a single to no more than a few General Circulation Models (GCMs). This study examines the uncertainty introduced to a crop impact assessment when 14 GCMs are used to determine future climate. The General Large Area Model for annual crops (GLAM) was applied over a global domain to simulate the productivity of soybean and spring wheat under baseline climate conditions and under climate conditions consistent with the 2050s under the A1B SRES emissions scenario as simulated by 14 GCMs. Baseline yield simulations were evaluated against global country-level yield statistics to determine the model's ability to capture observed variability in production. The impact of climate change varied between crops, regions, and by GCM. The spread in yield projections due to GCM varied between no change and a reduction of 50%. Without adaptation yield response was linearly related to the magnitude of local temperature change. Therefore, impacts were greatest for countries at northernmost latitudes where warming is predicted to be greatest. However, these countries also exhibited the greatest potential for adaptation to offset yield losses by shifting the crop growing season to a cooler part of the year and/or switching crop variety to take advantage of an extended growing season. The relative magnitude of impacts as simulated by each GCM was not consistent across countries and between crops. It is important, therefore, for crop impact assessments to fully account for GCM uncertainty in estimating future climates and to be explicit about assumptions regarding adaptation.
Resumo:
Las alteraciones del sistema climático debido al aumento de concentraciones de gases de efecto invernadero (GEI) en la atmósfera, tendrán implicaciones importantes para la agricultura, el medio ambiente y la sociedad. La agricultura es una fuente importante de emisiones de gases de efecto invernadero (globalmente contribuye al 12% del total de GEI), y al mismo tiempo puede ser parte de la solución para mitigar las emisiones y adaptarse al cambio climático. Las acciones frente al desafío del cambio climático deben priorizar estrategias de adaptación y mitigación en la agricultura dentro de la agenda para el desarrollo de políticas. La agricultura es por tanto crucial para la conservación y el uso sostenible de los recursos naturales, que ya están sometidos a impactos del cambio climático, al mismo tiempo que debe suministrar alimentos para una población creciente. Por tanto, es necesaria una coordinación entre las actuales estrategias de política climática y agrícola. El concepto de agricultura climáticamente inteligente ha surgido para integrar todos estos servicios de la producción agraria. Al evaluar opciones para reducir las amenazas del cambio climático para la agricultura y el medio ambiente, surgen dos preguntas de investigación: • ¿Qué información es necesaria para definir prácticas agrarias inteligentes? • ¿Qué factores influyen en la implementación de las prácticas agrarias inteligentes? Esta Tesis trata de proporcionar información relevante sobre estas cuestiones generales con el fin de apoyar el desarrollo de la política climática. Se centra en sistemas agrícolas Mediterráneos. Esta Tesis integra diferentes métodos y herramientas para evaluar las alternativas de gestión agrícola y políticas con potencial para responder a las necesidades de mitigación y adaptación al cambio climático. La investigación incluye enfoques cuantitativos y cualitativos e integra variables agronómicas, de clima y socioeconómicas a escala local y regional. La investigación aporta una recopilación de datos sobre evidencia experimental existente, y un estudio integrado sobre el comportamiento de los agricultores y las posibles alternativas de cambio (por ejemplo, la tecnología, la gestión agrícola y la política climática). Los casos de estudio de esta Tesis - el humedal de Doñana (S España) y la región de Aragón (NE España) - permiten ilustrar dos sistemas Mediterráneos representativos, donde el uso intensivo de la agricultura y las condiciones semiáridas son ya una preocupación. Por este motivo, la adopción de estrategias de mitigación y adaptación puede desempeñar un papel muy importante a la hora de encontrar un equilibrio entre la equidad, la seguridad económica y el medio ambiente en los escenarios de cambio climático. La metodología multidisciplinar de esta tesis incluye una amplia gama de enfoques y métodos para la recopilación y el análisis de datos. La toma de datos se apoya en la revisión bibliográfica de evidencia experimental, bases de datos públicas nacionales e internacionales y datos primarios recopilados mediante entrevistas semi-estructuradas con los grupos de interés (administraciones públicas, responsables políticos, asesores agrícolas, científicos y agricultores) y encuestas con agricultores. Los métodos de análisis incluyen: meta-análisis, modelos de gestión de recursos hídricos (modelo WAAPA), análisis multicriterio para la toma de decisiones, métodos estadísticos (modelos de regresión logística y de Poisson) y herramientas para el desarrollo de políticas basadas en la ciencia. El meta-análisis identifica los umbrales críticos de temperatura que repercuten en el crecimiento y el desarrollo de los tres cultivos principales para la seguridad alimentaria (arroz, maíz y trigo). El modelo WAAPA evalúa el efecto del cambio climático en la gestión del agua para la agricultura de acuerdo a diferentes alternativas políticas y escenarios climáticos. El análisis multicriterio evalúa la viabilidad de las prácticas agrícolas de mitigación en dos escenarios climáticos de acuerdo a la percepción de diferentes expertos. Los métodos estadísticos analizan los determinantes y las barreras para la adopción de prácticas agrícolas de mitigación. Las herramientas para el desarrollo de políticas basadas en la ciencia muestran el potencial y el coste para reducir GEI mediante las prácticas agrícolas. En general, los resultados de esta Tesis proporcionan información sobre la adaptación y la mitigación del cambio climático a nivel de explotación para desarrollar una política climática más integrada y ayudar a los agricultores en la toma de decisiones. Los resultados muestran las temperaturas umbral y la respuesta del arroz, el maíz y el trigo a temperaturas extremas, siendo estos valores de gran utilidad para futuros estudios de impacto y adaptación. Los resultados obtenidos también aportan una serie de estrategias flexibles para la adaptación y la mitigación a escala local, proporcionando a su vez una mejor comprensión sobre las barreras y los incentivos para su adopción. La capacidad de mejorar la disponibilidad de agua y el potencial y el coste de reducción de GEI se han estimado para estas estrategias en los casos de estudio. Estos resultados podrían ayudar en el desarrollo de planes locales de adaptación y políticas regionales de mitigación, especialmente en las regiones Mediterráneas. ABSTRACT Alterations in the climatic system due to increased atmospheric concentrations of greenhouse gas emissions (GHG) are expected to have important implications for agriculture, the environment and society. Agriculture is an important source of GHG emissions (12 % of global anthropogenic GHG), but it is also part of the solution to mitigate emissions and to adapt to climate change. Responses to face the challenge of climate change should place agricultural adaptation and mitigation strategies at the heart of the climate change agenda. Agriculture is crucial for the conservation and sustainable use of natural resources, which already stand under pressure due to climate change impacts, increased population, pollution and fragmented and uncoordinated climate policy strategies. The concept of climate smart agriculture has emerged to encompass all these issues as a whole. When assessing choices aimed at reducing threats to agriculture and the environment under climate change, two research questions arise: • What information defines smart farming choices? • What drives the implementation of smart farming choices? This Thesis aims to provide information on these broad questions in order to support climate policy development focusing in some Mediterranean agricultural systems. This Thesis integrates methods and tools to evaluate potential farming and policy choices to respond to mitigation and adaptation to climate change. The assessment involves both quantitative and qualitative approaches and integrates agronomic, climate and socioeconomic variables at local and regional scale. The assessment includes the collection of data on previous experimental evidence, and the integration of farmer behaviour and policy choices (e.g., technology, agricultural management and climate policy). The case study areas -- the Doñana coastal wetland (S Spain) and the Aragón region (NE Spain) – illustrate two representative Mediterranean regions where the intensive use of agriculture and the semi-arid conditions are already a concern. Thus the adoption of mitigation and adaptation measures can play a significant role for reaching a balance among equity, economic security and the environment under climate change scenarios. The multidisciplinary methodology of this Thesis includes a wide range of approaches for collecting and analysing data. The data collection process include revision of existing experimental evidence, public databases and the contribution of primary data gathering by semi-structured interviews with relevant stakeholders (i.e., public administrations, policy makers, agricultural advisors, scientist and farmers among others) and surveys given to farmers. The analytical methods include meta-analysis, water availability models (WAAPA model), decision making analysis (MCA, multi-criteria analysis), statistical approaches (Logistic and Poisson regression models) and science-base policy tools (MACC, marginal abatement cost curves and SOC abatement wedges). The meta-analysis identifies the critical temperature thresholds which impact on the growth and development of three major crops (i.e., rice, maize and wheat). The WAAPA model assesses the effect of climate change for agricultural water management under different policy choices and climate scenarios. The multi-criteria analysis evaluates the feasibility of mitigation farming practices under two climate scenarios according to the expert views. The statistical approaches analyses the drivers and the barriers for the adoption of mitigation farming practices. The science-base policy tools illustrate the mitigation potential and cost effectiveness of the farming practices. Overall, the results of this Thesis provide information to adapt to, and mitigate of, climate change at farm level to support the development of a comprehensive climate policy and to assist farmers. The findings show the key temperature thresholds and response to extreme temperature effects for rice, maize and wheat, so such responses can be included into crop impact and adaptation models. A portfolio of flexible adaptation and mitigation choices at local scale are identified. The results also provide a better understanding of the stakeholders oppose or support to adopt the choices which could be used to incorporate in local adaptation plans and mitigation regional policy. The findings include estimations for the farming and policy choices on the capacity to improve water supply reliability, abatement potential and cost-effective in Mediterranean regions.
Resumo:
Climate change produces significant social and economic impacts in most parts of the world, thus global action is needed to address climate change. In this chapter, the different possibilities of mitigation are explored from different points of view, and analyse the possibilities of adaptation to climate change. First, substantial reduction of GHG emission is needed, on the other hand adaptation action must deal with the inevitable impacts. According to the assessment of the chapter, it is essential that coordinated actions be taken at an EU level. In our argumentation, a macroeconomic model is used for the cost- benefit analysis of GHG gas emissions reduction. The GHG emission structure is analysed on European and global level. Even in the case of a successful mitigation strategy there rest the long-term effects of climate change which will need a coherent adaptation strategy to be dealt with. Although certain adaptation measures already have been taken, these initiatives are still very modest, and insufficient to deal with the economic effects of climate change properly.