971 resultados para 660302 Gas distribution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The momentum distribution is a powerful probe of strongly interacting systems that are expected to display universal behavior. This is contained in the contact parameters which relate few- and many-body properties. Here we consider a Bose gas in two dimensions and explicitly show that the two-body contact parameter is universal and then demonstrate that the momentum distribution at next-to-leading order has a logarithmic dependence on momentum which is vastly different from the three-dimensional case. Based on this, we propose a scheme for measuring the effective dimensionality of a quantum many-body system by exploiting the functional form of the momentum distribution. © 2013 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gas of non-interacting particles diffuses in a lattice of pulsating scatterers. In the finite-horizon case with bounded distance between collisions and strongly chaotic dynamics, the velocity growth (Fermi acceleration) is well described by a master equation, leading to an asymptotic universal non-Maxwellian velocity distribution scaling as v∼t. The infinite-horizon case has intermittent dynamics which enhances the acceleration, leading to v∼t ln t and a non-universal distribution. © Copyright EPLA, 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focuses on the presence of radon (Rn-222) and volatile organic compounds (VOCs) in soil gases at a gas station located in the city of Rio Claro, Sao Paulo, Brazil, where a fossil fuel leak occurred. The spatial distribution results show a correlation between Rn-222 and VOCs, consistent with the fact that radon gas has a greater chemical affinity with organic phases than with water. This finding demonstrates that the presence of a residual hydrocarbon phase in an aquifer can retain radon, leading to a reduced radon content in the soil gas. The data in this study confirm the results of previous investigations, in which the method used in this study provided a preliminary fingerprint of a contaminated area. Furthermore, the data analysis time is brief, and only simple equipment is required. (C) 2014 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gross morphology of the gas bladder is described, illustrated, compared and categorized among 86 of 88 nominal valid and six undescribed species representing all 31 genera of Doradidae with comments on ontogenetic and taxonomic variation when observed. The putatively basal-most doradids exhibit an unmodified cordiform gas bladder. Derived taxa exhibit an impressive suite of modifications including the addition of a secondary bladder, pronounced reduction of the posterolateral chambers, internal trabeculae, associations with bony capsule-like expansions of the anterior (Weberian) vertebrae, and accessory diverticula varying widely in size, shape, abundance, and distribution. Intra-specific differences are minor, most often reflective of ontogenetic changes especially in large-size species, whereas inter-specific and inter-generic differences are significant, in many cases diagnostic, and suggestive of phylogenetic signal excepting instances of evident convergence such as gas bladder reduction in Rhynchodoras and all but one species of Leptodoras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study deals with the seasonal distribution of Al, Ca, Cu, Fe, K, Mg, Na, Pb and Zn and water soluble ions (Cl-, PO43-, NO3-, SO42-, HCOO-, CH3COO-, oxalate, succinate, Na+, NH4+, K+, Mg2+ and Ca2+) found in PM10 samples (particulate matter less than 10 mu m in diameter) Sao Paulo City, Brazil, (April 2003-May 2004). Higher atmospheric levels were found for SO42-, NO3-, Cl- and PO43- while the main organic anions were oxalate and formate. Atmospheric levels for elements were: Fe > Al > Ca > K > Na > Mg > Zn > Cu > Pb. Some sources were predominant for some species: (i) fuel burning and/or biomass burning (NO3-, HCOO-, C2O42-, K+, Mg2+, Ca2+, Fe, Pb, Zn, Al, Ca, K and Mg), (ii) gas-to-particle conversion (SO42- and NH4+) and (iii) sea salt spray (Cl-, Na+ and Na).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate of solvolysis of p-nitrophenyl phosphate (PNPP) dianion in DMSO/water strongly decreases by increasing water concentration. Addition of linear alcohols (methanol, propanol, butanol, pentanol, and hexanol) at constant DMSO/water molar ratio produced an even sharper rate decrease. Alkyl phosphate formation, resulting from PNPP solvolysis in ternary DMSO/water/alcohol mixtures, increased with alcohol concentration and was essentially temperature independent. Methanol and hexanol were the poorest nucleophiles under all conditions. Activation energies and enthalpies for solvolysis in ternary mixtures were similar and entropies varied with alcohol concentration. Taken together these results can be best interpreted in terms of a dissociative mechanism with the intervention of metaphosphate. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured polycyclic aromatic hydrocarbons (PAHs) in bulk precipitation in the Fortaleza metropolitan area, Ceara, Brazil, for the first time. Because little information is available concerning PAHs in tropical climatic regions, we assessed their spatial distribution and possible sources and the influence of urban activities on the depositional fluxes of PAHs in bulk precipitation. The concentrations of individual and total PAHs (Sigma(PAHs)) in bulk precipitation ranged from undetectable to 133.9 ng.L-1 and from 202.6 to 674.8 ng.L-1, respectively. The plume of highest concentrations was most intense in a zone with heavy automobile traffic and favorable topography for the concentration of emitted pollutants. The depositional fluxes of PAHs in bulk precipitation calculated in this study (undetectable to 0.87 mu g.m(-2).month(-1)) are 4 to 27 times smaller than those reported from tourist sites and industrial and urban areas in the Northern Hemisphere. Diagnostic ratio analyses of PAH samples showed that the major source of emissions is gasoline exhaust, with a small percentage originating from diesel fuel. Contributions from coal and wood combustion were also found. Major economic activities appear to contribute to pollutant emissions. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study deals with the seasonal distribution of Al, Ca, Cu, Fe, K, Mg, Na, Pb and Zn and water soluble ions (Cl-, PO4(3-), NO3-, SO4(2-), HCOO-, CH3COO-, oxalate, succinate, Na+, NH4+, K+, Mg2+ and Ca2+) found in PM10 samples (particulate matter less than 10 mm in diameter) São Paulo City, Brazil, (April 2003-May 2004). Higher atmospheric levels were found for SO4(2-), NO3-, Cl- and PO4(3-) while the main organic anions were oxalate and formate. Atmospheric levels for elements were: Fe > Al > Ca > K > Na > Mg > Zn > Cu > Pb. Some sources were predominant for some species: (i) fuel burning and/or biomass burning (NO3-, HCOO-, C2O4(2-), K+, Mg2+, Ca2+, Fe, Pb, Zn, Al, Ca, K and Mg), (ii) gas-to-particle conversion (SO4(2-) and NH4+) and (iii) sea salt spray (Cl-, Na+ and Na).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programa de doctorado en Oceanografía. Trabajo presentado para la obtención del Diploma de Estudios Avanzados.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in metastability exchange optical pumping (MEOP) of 3He at high laser powers, with its various applications, but also at high gas pressures p3 and high magnetic field strengths B, have provided strong motivation for revisiting the understanding and for investigating the limitations of this powerful technique. For this purpose, we present systematic experimental and theoretical studies of efficiency and of relaxation mechanisms in B≤30 mT and p3=0.63−2.45 mbar. 3He nuclear polarisation is measured by light absorption in longitudinal configuration where weak light beams at 1083 nm parallel to magnetic field and cell axis with opposite circular polarisations are used to probe the distribution of populations in the metastable state. This method is systematically tested to evaluate potential systematic biases and is shown to be reliable for the study of OP dynamics despite the redistribution of populations by OP light. Nuclear polarisation loss associated to the emission of polarised light by the plasma discharge used for MEOP is found to decrease above 10 mT, as expected, due to hyperfine decoupling in highly excited states. However, this does not lead to improved MEOP efficiency at high laser power. We find clear evidence of additional laser-induced relaxation instead. The strong OP-enhanced polarisation losses, currently limiting MEOP performances, are quantitatively investigated using an angular momentum budget approach and a recently developed comprehensive model that describes the combined effects of OP, ME and relaxation, validated by comparison to experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inert gas washout tests, performed using the single- or multiple-breath washout technique, were first described over 60 years ago. As measures of ventilation distribution inhomogeneity, they offer complementary information to standard lung function tests, such as spirometry, as well as improved feasibility across wider age ranges and improved sensitivity in the detection of early lung damage. These benefits have led to a resurgence of interest in these techniques from manufacturers, clinicians and researchers, yet detailed guidelines for washout equipment specifications, test performance and analysis are lacking. This manuscript provides recommendations about these aspects, applicable to both the paediatric and adult testing environment, whilst outlining the important principles that are essential for the reader to understand. These recommendations are evidence based, where possible, but in many places represent expert opinion from a working group with a large collective experience in the techniques discussed. Finally, the important issues that remain unanswered are highlighted. By addressing these important issues and directing future research, the hope is to facilitate the incorporation of these promising tests into routine clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The push for improved fuel economy and reduced emissions has led to great achievements in engine performance and control. These achievements have increased the efficiency and power density of gasoline engines dramatically in the last two decades. With the added power density, thermal management of the engine has become increasingly important. Therefore it is critical to have accurate temperature and heat transfer models as well as data to validate them. With the recent adoption of the 2025 Corporate Average Fuel Economy(CAFE) standard, there has been a push to improve the thermal efficiency of internal combustion engines even further. Lean and dilute combustion regimes along with waste heat recovery systems are being explored as options for improving efficiency. In order to understand how these technologies will impact engine performance and each other, this research sought to analyze the engine from both a 1st law energy balance perspective, as well as from a 2nd law exergy analysis. This research also provided insights into the effects of various parameters on in-cylinder temperatures and heat transfer as well as provides data for validation of other models. It was found that the engine load was the dominant factor for the energy distribution, with higher loads resulting in lower coolant heat transfer and higher brake work and exhaust energy. From an exergy perspective, the exhaust system provided the best waste heat recovery potential due to its significantly higher temperatures compared to the cooling circuit. EGR and lean combustion both resulted in lower combustion chamber and exhaust temperatures; however, in most cases the increased flow rates resulted in a net increase in the energy in the exhaust. The exhaust exergy, on the other hand, was either increased or decreased depending on the location in the exhaust system and the other operating conditions. The effects of dilution from lean operation and EGR were compared using a dilution ratio, and the results showed that lean operation resulted in a larger increase in efficiency than the same amount of dilution with EGR. Finally, a method for identifying fuel spray impingement from piston surface temperature measurements was found. Note: The material contained in this section is planned for submission as part of a journal article and/or conference paper in the future.