999 resultados para 616.1


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friedrich Stoltze II

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two active chemoherm build-ups growing freely up into the oceanic water column, the Pinnacle and the South East-Knoll Chemoherms, have been discovered at Hydrate Ridge on the Cascadia continental margin. These microbially-mediated carbonate formations rise above the seafloor by several tens of meters and display a pinnacle-shaped morphology with steep flanks. The recovered rocks are pure carbonates dominated by aragonite. Based on fabric and mineralogic composition different varieties of authigenic aragonite can be distinguished. Detailed visual and petrographic investigations unambiguously reveal the involvement of microbes during the formation of the carbonates. The fabric of the cryptocrystalline and fibrous aragonite can be described as thrombolitic. Fossilized microbial filaments in the microcrystalline aragonite indicate the intimate relationship between microbes and carbonates. The strongly 13C-depleted carbon isotope values of the samples (as low as -48.1 per mill PDB) are characteristic of methane as the major carbon source for the carbonate formation. The methane-rich fluids from which the carbonates are precipitated originate most probably from a gas reservoir below the bottom-simulating reflector (BSR) and rise through fault systems. The d18O values of the aragonitic chemoherm carbonates are substantially higher (as high as 5.0 per mill PDB) than the expected equilibrium value for an aragonite forming from ambient seawater (3.5 per mill PDB). As a first approximation this indicates formation from glacial ocean water but other factors are considered as well. A conceptual model is presented for the precipitation of these chemoherm carbonates based on in situ observations and the detailed petrographic investigation of the carbonates. This model explains the function of the consortium of archaea and sulfate-reducing bacteria that grows on the carbonates performing anaerobic oxidation of methane (AOM) and enabling the precipitation of the chemoherms above the seafloor surrounded by oxic seawater. Beggiatoa mats growing on the surface of the chemoherms oxidize the sulfide provided by sulfate-dependent anaerobic oxidation of methane within an oxic environment. The contact between Beggiatoa and the underlying microbial consortium represents the interface between the overlying oxic water column and an anoxic micro-environment where carbonate formation takes place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In July 1995 geological and biological studies in the axial zone of the northern part of the Mohn's Ridge (72°20'N) were carried out during Cruise 36 of R/V Akademik Mstislav Keldysh. Slopes of the neovolcanic zone, as well as a caldera on its crest were investigated with use of deep-sea manned submersibles Mir, geological and biological samples were also collected. Use of the Rosette sounding complex provided recognition of several major hydrothermal plumes. Bottom sediments of the marginal depression are enriched in metals characteristic for hydrothermal metalliferous sediments. Thus, a new unknown hydrothermal field was found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the RV Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which we compared to ecological provinces proposed elsewhere in the literature. As could be expected, picophytoplankton was responsible for most of the variability of PFTs in the eastern Atlantic Ocean. Our bio-optical clusters agreed well with established provinces and thus can be used to classify areas of similar biogeography. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phycobiliproteins are a family of water-soluble pigment proteins that play an important role as accessory or antenna pigments and absorb in the green part of the light spectrum poorly used by chlorophyll a. The phycoerythrins (PEs) are one of four types of phycobiliproteins that are generally distinguished based on their absorption properties. As PEs are water soluble, they are generally not captured with conventional pigment analysis. Here we present a statistical model based on in situ measurements of three transatlantic cruises which allows us to derive relative PE concentration from standardized hyperspectral underwater radiance measurements (Lu). The model relies on Empirical Orthogonal Function (EOF) analysis of Lu spectra and, subsequently, a Generalized Linear Model with measured PE concentrations as the response variable and EOF loadings as predictor variables. The method is used to predict relative PE concentrations throughout the water column and to calculate integrated PE estimates based on those profiles.