975 resultados para 41 kDa protein
Resumo:
A Neospora caninum 17 kDa protein fraction (p17) has been described as an immunodominant antigen (IDA) under reducing and non-reducing conditions. The aim of the present study was to investigate the diagnostic utility of p17 in cattle. In order to achieve this, p17 was purified by electroelution from whole N. caninum tachyzoite soluble extract and a p17-based Western blot (WB-p17) was developed. The p17 recognition was measured by densitometry and expressed as OD values to check the validity of the WB-p17. A total of 131 sera including sequential samples from naturally- and experimentally-infected calves and breeding cattle were analysed by WB-p17 and compared with IFAT using whole formalin-fixed tachyzoites as a reference test. The results obtained highlight the feasibility of using the N. caninum p17 in a diagnostic test in cattle. Firstly, the assay based on the p-17 antigen discriminated between known positive and negative sera from different cattle populations, breeding cattle and calves. Secondly, the p17 antigen detected fluctuations in the antibody levels and seroconversion in naturally- and experimentally-infected cattle. Significant differences in p-17 antigen recognition were observed between naturally infected aborting and non-aborting cattle, as well as significant antibody fluctuations over time in experimentally infected cattle, which varied between groups. Furthermore, the results obtained with WB-p17 are in accordance with the results obtained with the IFAT, as high agreement values were obtained when all bovine subpopulations were included (kappa = 0.86).
Resumo:
To link the presence of intrathecal virus-specific oligoclonal immunoglobulin G (IgG) in multiple sclerosis patients to a demyelinating activity, aggregating rat brain cell cultures were treated with antibodies directed against two viruses, namely, rubella (RV) and hepatitis B (HB). Anti-RV antibodies in the presence of complement decreased myelin basic protein concentrations in a dose-dependent manner, whereas anti-HB antibodies had no effect. A similar but less pronounced effect was observed on the enzymatic activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase, which is enriched in noncompact membranes of oligodendrocytes. These effects were comparable to those in cultures treated with antibodies directed against myelin oligodendrocyte glycoprotein (MOG), previously found to be myelinotoxic both in vitro and in vivo. Sequence homologies were found between structural glycoprotein E(2) of RV and MOG, suggesting that demyelination was due to molecular mimicry. To support the hypothesis that demyelination was caused by anti-RV IgG that recognized an MOG epitope, we found that anti-RV antibodies depleted MOG in a dose-dependent manner. Further evidence came from the demonstration that anti-RV and anti-MOG IgG colocalized on oligodendrocyte processes and that both revealed by Western blot a 28 kDa protein in CNS myelin, a molecular weight corresponding to MOG. These findings suggest that a virus such as RV exhibiting molecular mimicry with MOG can trigger an autoimmune demyelination.
Resumo:
In this study we have demonstrated the potential of two-dimensional electrophoresis (2DE)-based technologies as tools for characterization of the Leishmania proteome (the expressed protein complement of the genome). Standardized neutral range (pH 5-7) proteome maps of Leishmania (Viannia) guyanensis and Leishmania (Viannia) panamensis promastigotes were reproducibly generated by 2DE of soluble parasite extracts, which were prepared using lysis buffer containing urea and nonidet P-40 detergent. The Coomassie blue and silver nitrate staining systems both yielded good resolution and representation of protein spots, enabling the detection of approximately 800 and 1,500 distinct proteins, respectively. Several reference protein spots common to the proteomes of all parasite species/strains studied were isolated and identified by peptide mass spectrometry (LC-ES-MS/MS), and bioinformatics approaches as members of the heat shock protein family, ribosomal protein S12, kinetoplast membrane protein 11 and a hypothetical Leishmania-specific 13 kDa protein of unknown function. Immunoblotting of Leishmania protein maps using a monoclonal antibody resulted in the specific detection of the 81.4 kDa and 77.5 kDa subunits of paraflagellar rod proteins 1 and 2, respectively. Moreover, differences in protein expression profiles between distinct parasite clones were reproducibly detected through comparative proteome analyses of paired maps using image analysis software. These data illustrate the resolving power of 2DE-based proteome analysis. The production and basic characterization of good quality Leishmania proteome maps provides an essential first step towards comparative protein expression studies aimed at identifying the molecular determinants of parasite drug resistance and virulence, as well as discovering new drug and vaccine targets.
Resumo:
The development of a more sensitive diagnostic test for schistosomiasis is needed to overcome the limitations of the use of stool examination in low endemic areas. Using parasite antigens in enzyme linked immunosorbent assay is a promising strategy, however a more rational selection of parasite antigens is necessary. In this study we performed in silico analysis of the Schistosoma mansoni genome, using SchistoDB database and bioinformatic tools for screening immunogenic antigens. Based on evidence of expression in all parasite life stage within the definitive host, extracellular or plasmatic membrane localization, low similarity to human and other helminthic proteins and presence of predicted B cell epitopes, six candidates were selected: a glycosylphosphatidylinositol-anchored 200 kDa protein, two putative cytochrome oxidase subunits, two expressed proteins and one hypothetical protein. The recognition in unidimensional and bidimensional Western blot of protein with similar molecular weight and isoelectric point to the selected antigens by sera from S. mansoni infected mice indicate a good correlation between these two approaches in selecting immunogenic proteins.
Resumo:
The aim of this work was the partial purification and subsequent evaluation of chitinase expression during the various growth phases of Paracoccidioides brasiliensis. Initially, PbCTS1r was expressed as a recombinant protein and displayed enzymatic activity against 4-MU-[N-acetylglucosamine (GlcNAc)]3 and 4-MU-(GlcNAc)2. Two proteins, 45 kDa and 39 kDa in size, were partially purified from P. brasiliensis yeast crude extract using cation-exchange chromatography coupled with HPLC and were characterised as PbCTS1 and PbCTS2, respectively. Anti-PbCTS1r antibody recognised two proteins in the crude extracts of yeast and the transitional stage between mycelial and yeast phases. In crude extracts of mycelium, only the 45 kDa protein was detected. However, quantitative real-time polymerase chain reaction led to the detection of small quantities of Pbcts2 transcript in the mycelial phase. In the yeast cell wall extract, only the 39 kDa protein was detected. Moreover, both proteins were secreted by the yeast parasitic phase, suggesting that these proteins participate in the modulation of the fungal environment. Phylogenetic analysis of the predicted PbCTS1 and PbCTS2 proteins indicated that they code for distinct chitinases in P. brasiliensis. During evolution, P. brasiliensis could have acquired the paralogues Pbcts1 and Pbcts2 for growth and survival in diverse environments in both saprophytic and parasitic phases.
Resumo:
BACKGROUND Obeche wood dust is a known cause of occupational asthma where an IgE-mediated mechanism has been demonstrated. OBJECTIVE To characterize the allergenic profile of obeche wood dust and evaluate the reactivity of the proteins by in vitro, ex vivo and in vivo assays in carpenters with confirmed rhinitis and/or asthma MATERIALS AND METHODS An in-house obeche extract was obtained, and two IgE binding bands were purified (24 and 12 kDa) and sequenced by N-terminal identity. Specific IgE and IgG, basophil activation tests and skin prick tests (SPTs) were performed with whole extract and purified proteins. CCD binding was analyzed by ELISA inhibition studies. RESULTS Sixty-two subjects participated: 12 with confirmed occupational asthma/rhinitis (ORA+), 40 asymptomatic exposed (ORA-), and 10 controls. Of the confirmed subjects, 83% had a positive SPT to obeche. There was a 100% recognition by ELISA in symptomatic subjects vs. 30% and 10% in asymptomatic exposed subjects and controls respectively (p<0.05). Two new proteins were purified, a 24 kDa protein identified as a putative thaumatin-like protein and a 12 kDa gamma-expansin. Both showed allergenic activity in vitro, with the putative thaumatin being the most active, with 92% recognition by ELISA and 100% by basophil activation test in ORA+ subjects. Cross-reactivity due to CCD was ruled out in 82% of cases. CONCLUSIONS Two proteins of obeche wood were identified and were recognized by a high percentage of symptomatic subjects and by a small proportion of asymptomatic exposed subjects. Further studies are required to evaluate cross reactivity with other plant allergens.
Resumo:
A bispecific MAb was derived from the fusion of a hybridoma producing MAb CD3 with a hybridoma producing MAb L-DI (which is directed against a 41-kDa glycoprotein expressed in most gastro-intestinal and pancreatic carcinomas). Bispecific antibody molecules were isolated from parental antibody molecules by the use of hydroxylapatite-HPLC and shown to target human cytolytic T lymphocytes, irrespective of their original specificity, to specifically lyse human colon carcinoma cells. Localization studies in vivo using nude mice bearing human colon carcinoma xenografts showed significant accumulation of the HPLC-purified 125I-labelled bispecific antibodies into the tumor compared to 131I-labelled control CD3 antibody.
Resumo:
Retinitis pigmentosa (RP) is a degenerative disease of the retina leading to progressive loss of vision and, in many instances, to legal blindness at the end stage. The RP28 locus was assigned in 1999 to the short arm of chromosome 2 by homozygosity mapping in a large Indian family segregating autosomal-recessive RP (arRP). Following a combined approach of chromatin immunoprecipitation and parallel sequencing of genomic DNA, we identified a gene, FAM161A, which was shown to carry a homozygous nonsense mutation (p.Arg229X) in patients from the original RP28 pedigree. Another homozygous FAM161A stop mutation (p.Arg437X) was detected in three subjects from a cohort of 118 apparently unrelated German RP patients. Age at disease onset in these patients was in the second to third decade, with severe visual handicap in the fifth decade and legal blindness in the sixth to seventh decades. FAM161A is a phylogenetically conserved gene, expressed in the retina at relatively high levels and encoding a putative 76 kDa protein of unknown function. In the mouse retina, Fam161a mRNA is developmentally regulated and controlled by the transcription factor Crx, as demonstrated by chromatin immunoprecipitation and organotypic reporter assays on explanted retinas. Fam161a protein localizes to photoreceptor cells during development, and in adult animals it is present in the inner segment as well as the outer plexiform layer of the retina, the synaptic interface between photoreceptors and their efferent neurons. Taken together, our data indicate that null mutations in FAM161A are responsible for the RP28-associated arRP.
Resumo:
Inositol and its phosphorylated derivatives play a major role in brain function, either as osmolytes, second messengers or regulators of vesicle endo- and exocytosis. Here we describe the identification and functional characterization of a novel H(+)-myo- inositol co-transporter, HMIT, expressed predominantly in the brain. HMIT cDNA encodes a 618 amino acid polypeptide with 12 predicted transmembrane domains. Functional expression of HMIT in Xenopus oocytes showed that transport activity was specific for myo-inositol and related stereoisomers with a Michaelis-Menten constant of approximately 100 microM, and that transport activity was strongly stimulated by decreasing pH. Electrophysiological measurements revealed that transport was electrogenic with a maximal transport activity reached at pH 5.0. In rat brain membrane preparations, HMIT appeared as a 75-90 kDa protein that could be converted to a 67 kDa band upon enzymatic deglycosylation. Immunofluorescence microscopy analysis showed HMIT expression in glial cells and some neurons. These data provide the first characterization of a mammalian H(+)-coupled myo- inositol transporter. Predominant central expression of HMIT suggests that it has a key role in the control of myo-inositol brain metabolism.
Resumo:
Memo is a widely expressed 33-kDa protein required for heregulin (HRG)-, epidermal growth factor (EGF)-, and fibroblast growth factor (FGF)-induced cell motility. Studies in mouse embryonic fibroblasts, wild-type or knockout for Memo, were performed to further investigate the role of Memo downstream of FGFR. We demonstrated that Memo associates with the FGFR signalosome and is necessary for optimal activation of signaling. To uncover Memo's physiological role, Memo conditional-knockout mice were generated. These animals showed a reduced life span, increased insulin sensitivity, small stature, graying hair, alopecia, kyphosis, loss of subcutaneous fat, and loss of spermatozoa in the epididymis. Memo-knockout mice also have elevated serum levels of active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D), and calcium compared to control littermates expressing Memo. In summary, the results from in vivo and in vitro models support the hypothesis that Memo is a novel regulator of FGFR signaling with a role in controlling 1,25(OH)2D production and normal calcium homeostasis.
Resumo:
Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.
Resumo:
Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.
Resumo:
The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4(+) and CD8(+) T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8(+) T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8(+) T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8(+) T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.
Resumo:
Glucose exerts inverse effects upon the secretory function of islet alpha- and beta-cells, suppressing glucagon release and increasing insulin release. This diverse action may result from differences in glucose transport and metabolism between the two cell types. The present study compares glucose transport in rat alpha- and beta-cells. beta-Cells transcribed GLUT2 and, to a lesser extent, GLUT 1; alpha-cells contained GLUT1 but no GLUT2 mRNA. No other GLUT-like sequences were found among cDNAs from alpha- or beta-cells. Both cell types expressed 43-kDa GLUT1 protein which was enhanced by culture. The 62-kDa beta-cell GLUT2 protein was converted to a 58-kDa protein after trypsin treatment of the cells without detectable consequences upon glucose transport kinetics. In beta-cells, the rates of glucose transport were 10-fold higher than in alpha-cells. In both cell types, glucose uptake exceeded the rates of glucose utilization by a factor of 10 or more. Glycolytic flux, measured as D-[5(3)H]glucose utilization, was comparable in alpha- and beta-cells between 1 and 10 mmol/liter substrate. In conclusion, differences in glucose transporter gene expression between alpha- and beta-cells can be correlated with differences in glucose transport kinetics but not with different glucose utilization rates.
Resumo:
In this study we focused our attention on the behavior of four nuclear matrix proteins during the various stages of apoptosis in the HL-60 cell line exposed to the DNA topoisomerase I inhibitor, camptothecin. We have examined the following antigens by immunocytochemical techniques: (i) the 180-kDa nucleolar isoform of DNA topoisomerase II; (ii) a 126-kDa polypeptide of nuclear bodies; (iii) a 125-kDa protein; and (iv) a 160-kDa polypeptide which are known to be components of the matrix inner network. Indirect immunofluorescence experiments were performed to follow these nuclear matrix antigens during apoptosis. Moreover, the ultrastructural localization of both 125- and 160-kDa proteins was investigated by electron microscope immunocytochemistry with gold-conjugated secondary antibodies. While the antibody to the nucleolar isoform of DNA topoisomerase II gave a fluorescent pattern that was well-maintained until the late phases of apoptosis, the other three nuclear antigens showed marked modifications in their distribution. A common feature, particularly evident for 125- and 160-kDa proteins, was their absence from cap-shaped chromatin marginations, whereas they were present in the areas of remaining decondensed chromatin. The 126-kDa polypeptide concentrated progressively in an irregular mass at the opposite side of the crescentic caps and then broke up in fine spots. The 125- and 160-kDa proteins localized in the nucleolus and precisely within certain granules which are known to appear in the nucleolar area after camptothecin administration. These results show that, in addition to the well-known chromatin changes, nuclear organization undergoes other rearrangements during the apoptotic process.