973 resultados para 4-TRIMETHYLPENTYL PHOSPHINIC ACID
Resumo:
Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn(2+) enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn(2+) at pH 4.6-7.5. All four structures reveal three tetra-coordinated Zn(2+)-binding sites (ZBS 1-3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR.Zn(2+) binding perturbs loop E-alpha-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases similar to 5-fold in the presence of Zn(2+). Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn(2+). HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn(2+) binding, although the alpha-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn(2+), which is consistent with the tertiary structural perturbation provoked by Zn(2+) binding, tetramer stability is only marginally affected by Zn(2+). These data highlight structural and functional roles of Zn(2+) in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.
Resumo:
An efficient multicomponent reaction of arenealdehydes, mercaptoacetic acid and piperonilamine under ultrasound irradiation to afford 2-aryl-3-(piperonylmethyl)-1,3-thiazolidin-4-ones is reported. Applying this methodology, eleven heterocycles were synthesized and isolated in good yields after short reaction times. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A novel analytical approach, based on a miniaturized extraction technique, the microextraction by packed sorbent (MEPS), followed by ultrahigh pressure liquid chromatography (UHPLC) separation combined with a photodiode array (PDA) detection, has been developed and validated for the quantitative determination of sixteen biologically active phenolic constituents of wine. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (linearity, sensitivity, selectivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters on the MEPS performance such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). The wine bioactive phenolics were eluted by 250 μL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a HSS T3 analytical column (100 mm × 2.1 mm, 1.8 μm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method gave satisfactory results in terms of linearity with r2-values > 0.9986 within the established concentration range. The LOD varied from 85 ng mL−1 (ferulic acid) to 0.32 μg mL−1 ((+)-catechin), whereas the LOQ values from 0.028 μg mL−1 (ferulic acid) to 1.08 μg mL−1 ((+)-catechin). Typical recoveries ranged between 81.1 and 99.6% for red wines and between 77.1 and 99.3% for white wines, with relative standard deviations (RSD) no larger than 10%. The extraction yields of the MEPSC8/UHPLC–PDA methodology were found between 78.1 (syringic acid) and 99.6% (o-coumaric acid) for red wines and between 76.2 and 99.1% for white wines. The inter-day precision, expressed as the relative standard deviation (RSD%), varied between 0.2% (p-coumaric and o-coumaric acids) and 7.5% (gentisic acid) while the intra-day precision between 0.2% (o-coumaric and cinnamic acids) and 4.7% (gallic acid and (−)-epicatechin). On the basis of analytical validation, it is shown that the MEPSC8/UHPLC–PDA methodology proves to be an improved, reliable, and ultra-fast approach for wine bioactive phenolics analysis, because of its capability for determining simultaneously in a single chromatographic run several bioactive metabolites with high sensitivity, selectivity and resolving power within only 10 min. Preliminary studies have been carried out on 34 real whole wine samples, in order to assess the performance of the described procedure. The new approach offers decreased sample preparation and analysis time, and moreover is cheaper, more environmentally friendly and easier to perform as compared to traditional methodologies.
Resumo:
The present study investigated the role of several 5-HT receptor subtypes in the lateral parabrachial nucleus (LPBN) in the control of sodium appetite (i.e. NaCl consumption). Male Holtzman rats had cannulas implanted bilaterally into the LPBN for the injection of 5-HT receptor agonists and antagonists in conjunction with either acute fluid depletion or 24-h sodium depletion. Following these treatments, access to 0.3 M NaCl was provided and the intakes of saline and water were measured for the next 2 h. Bilateral injections of the 5-HT2A receptor antagonist, ketanserin or the 5-HT2C receptor antagonist, mianserin into the LPBN increased 0.3 M NaCl intake without affecting water intake induced by acute fluid-depletion. Bilateral injections of the 5-HT2B receptor agonist, BW723C86 hydrochloride, had no effect on 0.3 M NaCl or water intake under these conditions. Treatment of the LPBN with the 5-HT2B/2C receptor agonist, 2-(2-methyl-4-clorophenoxy) propanoic acid (mCPP) caused dose-related reductions in 0.3 M NaCl intake after 24 h sodium depletion. The effects of mCPP were prevented by pretreating the LPBN with the 5-HT2B/2C receptor antagonist, SDZSER082. Activation of 5-HT3 receptors by the receptor agonist, 1-phenylbiguanicle (PBG) caused dose-related increases in 0.3 M NaCl intake. Pretreatment of the LPBN with the 5-HT3 receptor antagonist, 1-methyl-N-[8-methyl-8-azabicyclo (3.2.1)-oct-3-yl]-1H-indazole-3-carboxamide (LY-278,584) abolished the effects of PBG, but LY-278,584 had no effects on sodium or water intake when injected by itself. PBG injected into the LPBN did not alter intake of palatable 0.06 M sucrose in fluid replete rats. The results suggest that activation of the 5-HT2A and 5-HT2C receptor subtypes inhibits sodium ingestion. In contrast, activation of the 5-HT3 receptor subtype increases sodium ingestion. Therefore, multiple serotonergic receptor subtypes in the LPBN are implicated in the control of sodium intake, sometimes by mediating opposite effects of 5-HT. The results provide new information concerning the control of sodium intake by LPBN mechanisms. (C) 2007 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Oral clefts are one of the most common birth defects with significant medical, psychosocial, and economic ramifications. Oral clefts have a complex etiology with genetic and environmental risk factors. There are suggestive results for decreased risks of cleft occurrence and recurrence with folic acid supplements taken at preconception and during pregnancy with a stronger evidence for higher than lower doses in preventing recurrence. Yet previous studies have suffered from considerable design limitations particularly non-randomization into treatment. There is also well-documented effectiveness for folic acid in preventing neural tube defect occurrence at 0.4 mg and recurrence with 4 mg. Given the substantial burden of clefting on the individual and the family and the supportive data for the effectiveness of folic acid supplementation as well as its low cost, a randomized clinical trial of the effectiveness of high versus low dose folic acid for prevention of cleft recurrence is warranted.Methods/design: This study will assess the effect of 4 mg and 0.4 mg doses of folic acid, taken on a daily basis during preconception and up to 3 months of pregnancy by women who are at risk of having a child with nonsyndromic cleft lip with/without palate (NSCL/P), on the recurrence of NSCL/P. The total sample will include about 6,000 women (that either have NSCL/P or that have at least one child with NSCL/P) randomly assigned to the 4 mg and the 0.4 mg folic acid study groups. The study will also compare the recurrence rates of NSCL/P in the total sample of subjects, as well as the two study groups (4mg, 0.4 mg) to that of a historical control group. The study has been approved by IRBs (ethics committees) of all involved sites. Results will be disseminated through publications and presentations at scientific meetings.Discussion: The costs related to oral clefts are high, including long term psychological and socio-economic effects. This study provides an opportunity for huge savings in not only money but the overall quality of life. This may help establish more specific clinical guidelines for oral cleft prevention so that the intervention can be better tailored for at-risk women.
Resumo:
Three pens of male broiler chicks were raised under standard conditions and fed from 7 to 42 days of age three isocaloric diets each with 15.8; 19.6 and 19.5% of CP; and 51, 51, and 44% of CHO; and 6.5; 3.0 and 7.7% of fat, and designated as the low protein (LowCP), low lipid (LowL) and low carbohydrate (LowCHO) diets, respectively. Body weights and feed intake were monitored weekly and blood samples were collected at the same time for posterior analysis of hormone and metabolite content. Chickens fed the LowCP diet were characterized by a reduced body weight gain and feed intake and poorer feed conversion efficiency compared to those fed the LowL and LowCHO diets, which were very similar in this respect. Plasma corticosterone and glucose levels and creatine kinase activity were not significantly changed by diet composition. LowCP chickens were characterised by the lowest plasma T-4 and uric acid levels (indicative for reduced protein breakdown and lower protein ingestion) but highest plasma triglyceride levels (congruent with their higher fat deposition) compared to the LowL and LowCHO chickens. LowL chickens had on average higher plasma T-3 and free fatty acid levels compared to the LowCP and LowCHO chickens.In conclusion, a limited substitution of carbohydrate for fat in iso-nitrogenous, iso-energetic diets has no pronounced effects on plasma hormone and metabolite levels, except for the elevation in T-3 (may enhance glucose uptake) and free fatty acid levels in the plasma of the chickens fed the LowL diet. The protein content of the diet has a greater impact on zootechnical performance, and underlying endocrine regulation of the intermediary metabolism compared to the dietary lipid and CHO fraction. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The present study shows how nature combined a small number of chemical building blocks to synthesize the acylpolyamine toxins in the venoms of Nephilinae orb-web spiders. Considering these structures in four parts, it was possible to rationalize a way to represent the natural combinatorial chemistry involved in the synthesis of these toxins: an aromatic moiety is connected through a linker amino acid to a polyamine chain, which in turn may be connected to an optional tail. The polyamine chains were classified into seven subtypes (from A to G) depending on the way the small chemical blocks are combined. These polyamine chains may be connected to one of the three possible chromophore moieties: 2,4-dihydroxyphenyl acetic acid, or 4-hydroxyindole acetic acid, or even with the indole acetic group. The connectivity between the aryl moiety and the polyamine chain is usually made through an asparagine residue; optionally a tail may be attached to the polyamine chain; nine different types of tails were identified among the 72 known acylpolyamine toxin structures. The combinations of three chromophores, two types of amino acid linkers, seven sub-types of polyamine backbone, and nine options of tails results in 378 different structural possibilities. However, we detected only 91 different toxin structures, which may represent the most successful structural trials in terms of efficiency of prey paralysis/death.
Resumo:
As part of our study on bioactive agents from Brazilian rainforest plants, two new glucoalkaloids, 3,4-dehydro-strictosidine (1) and 3,4-dehydro-strictosidinic acid (2), were isolated from Chimarrhis turbinata, along with seven known glucoalkaloids, cordifoline (3), strictosidinic acid (4), strictosidine (5), 5alpha-carboxystrictosidine (6), turbinatine (7), desoxycordifoline (8), and harman-3-carboxylic acid (9). The structures of the new alkaloids were established on the basis of comprehensive spectral analysis, mainly 1D and 2D NMR experiments, as well as high-resolution HRESIMS. Alkaloid 3 showed strong free-radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) as well as pronounced antioxidant activity evidenced by redox properties measured by ElCD-HPLC. Additionally, alkaloids 1-9 were submitted to TLC screening for acetylcholinesterase inhibitors. Both 7 and 8 were shown to be moderate acetylcholinesterase inhibitors at a concentration of 0.1 and 1.0 muM, respectively. In an in vitro rat brain assay, 7 showed moderate activity (IC50 1.86 muM), compared to the standard compound, galanthamine (IC50 0.92 muM).
Resumo:
Fifteen soil samples and four extradants (DTPA, Na 2EDTA, HCl and Mehlich 1) were used to study soil extraction methods for available zinc. Each extradant was studied in three soil:solution ratios (1:2, 1:4 and 1:10) and in three extraction periods in the ratio most frequently used. The zinc extracted by DTPA, Na 2EDTA and HCl was not affected by use of soil:solution ratios 1:2 and 1:4, but the amount extracted increased with the 1:10 ratio. In this relation, the variation coefficients increased. With Mehlich, no definite tendency was observed. The increase of extraction period for DTPA extractant, in 1:2 ratio, had little effect on the amount of zinc extracted and on the precision. As to Na 2EDTA extractant in 1:10 ratio, with the increase of extraction time, both increased. As to HCl and Mehlich, both in 1:4 ratio, the increase in extraction period had no effect on the amount of zinc extracted and no definite effect on the precision. Thus, the use of 1:2 ratio for DTPA and Na 2EDTA and 1:4 ratio for acid extractants is recommended. Concerning the period of extraction, 120 min should be used with DTPA and Na 2EDTA, 15 min with HCl and 5 min with Mehlich.
Resumo:
The effect of combining the photocatalytic processes using TiO 2 and the photo-Fenton reaction with Fe3+ or ferrioxalate as a source of Fe2+ was investigated in the degradation of 4-chlorophenol (4CP) and dichloroacetic acid (DCA) using solar irradiation. Multivariate analysis was used to evaluate the role of three variables: iron, H2O2 and TiO2 concentrations. The results show that TiO2 plays a minor role when compared to iron and H2O2 in the solar degradation of 4CP and DCA in the studied conditions. However, its presence can improve TOC removal when H2O2 is totally consumed. Iron and peroxide play major roles, especially when Fe(NO3)3 used in the degradation of 4CP. No significant synergistic effect was observed by the addition of TiO 2 in this process. On the other hand, synergistic effects were observed between FeOx and TiO2 and between H 2O2 and TiO2 in the degradation of DCA. © IWA Publishing 2004.
Antioxidant Effect of Melatonin on the Functional Activity of Colostral Phagocytes in Diabetic Women
Resumo:
Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca2+ release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca2+ release. Phagocytes treated with TMB-8 (intracellular Ca2+ inhibitor) decreased superoxide, bactericidal activity and intracellular Ca2+ release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC and other infections. In diabetic mothers, because maternal hyperglycemia modifies the functional activity of colostrum phagocytes, melatonin effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity. © 2013 Morceli et al.
Resumo:
Aim: Central chemoreceptors are important to detect changes of CO2/H+, and the Locus coeruleus (LC) is one of the many putative central chemoreceptor sites. Here, we studied the contribution of LC glutamatergic receptors on ventilatory, cardiovascular and thermal responses to hypercapnia. Methods: To this end, we determined pulmonary ventilation (VE), body temperatures (Tb), mean arterial pressure (MAP) and heart rate (HR) of male Wistar rats before and after unilateral microinjection of kynurenic acid (KY, an ionotropic glutamate receptor antagonist, 10 nmol/0.1 μL) or α-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamate receptor antagonist, 10 nmol/0.1 μL) into the LC, followed by 60 min of air breathing or hypercapnia exposure (7% CO2). Results: Ventilatory response to hypercapnia was higher in animals treated with KY intra-LC (1918.7 ± 275.4) compared with the control group (1057.8 ± 213.9, P < 0.01). However, the MCPG treatment within the LC had no effect on the hypercapnia-induced hyperpnea. The cardiovascular and thermal controls were not affected by hypercapnia or by the injection of KY and MCPG in the LC. Conclusion: These data suggest that glutamate acting on ionotropic, but not metabotropic, receptors in the LC exerts an inhibitory modulation of hypercapnia-induced hyperpnea. © 2013 Scandinavian Physiological Society.
Resumo:
CeO2 nanoparticles were synthesized by the precipitation method and modified with para-toluene sulfonic acid (PTSH), either in situ or post-synthesis. The presence of PTSH in the samples was confirmed by FTIR. PXRD and FTIR analyses showed that the post-synthesis PTSH modification altered the CeO2 structure, whereas the in situ modification maintained intact the crystalline structure and UV-vis absorbance properties. For both in situ and post-synthesis modifications, TEM images revealed the presence of nanoparticles that were 5nm in size. The dispersibility of the in situ PTSH-modified material in a hydrophilic ureasil-poly(ethylene oxide) matrix was investigated using SAXS measurements, which indicated that CeO2 nanoparticles modified with PTSH in situ were less aggregated within the matrix, compared to unmodified CeO2 nanoparticles. © 2013 Elsevier B.V.
Resumo:
Flavonoid-rich Praxelis clematidea (Griseb.) R.M.King & H.Robinson (Asteraceae) is a native plant of South America. This study evaluates the gastroprotective activity and possible mechanisms for both the chloroform (CHCl3P) and ethyl acetate phases (AcOEtP) obtained from aerial parts of the plant. The activity was investigated using acute models of gastric ulcer. Gastric secretion biochemical parameters were determined after pylorus ligature. The participation of cytoprotective factors such as mucus, nitric oxide (NO), sulfhydryl (SH) groups, prostaglandin E2 (PGE 2), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), reduction of lipid peroxidation (malondialdehyde level), and polymorphonuclear infiltration (myeloperoxidase activity), was also investigated. CHCl3P (125, 250, and 500 mg/kg) and AcOEtP (62.5, 125, and 250 mg/kg) showed significant gastroprotective activity, reducing the ulcerative index by 75, 83, 88 % and 66, 66, 81 % for ethanol; 67, 67, 56 % and 56, 53, 58 % for a non-steroidal anti-inflammatory drug (NSAID); and 74, 58, 59 % and 64, 65, 61 % for stress-induced gastric ulcer, respectively. CHCl3P (125 mg/kg) and AcOEtP (62.5 mg/kg) significantly reduced the ulcerative area by 78 and 83 %, respectively, for the ischemia-reperfusion model. They also did not alter the biochemical parameters of gastric secretion, the GSH level or the activities of SOD, GPx or GR. They increased the quantity of gastric mucus, not dependent on NO, yet dependent on SH groups, and maintained PGE2 levels. The P. clematidea phases demonstrated gastroprotective activity related to cytoprotective factors. © 2012 The Japanese Society of Pharmacognosy and Springer.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA