963 resultados para 3D object manipulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays robotic applications are widespread and most of the manipulation tasks are efficiently solved. However, Deformable-Objects (DOs) still represent a huge limitation for robots. The main difficulty in DOs manipulation is dealing with the shape and dynamics uncertainties, which prevents the use of model-based approaches (since they are excessively computationally complex) and makes sensory data difficult to interpret. This thesis reports the research activities aimed to address some applications in robotic manipulation and sensing of Deformable-Linear-Objects (DLOs), with particular focus to electric wires. In all the works, a significant effort was made in the study of an effective strategy for analyzing sensory signals with various machine learning algorithms. In the former part of the document, the main focus concerns the wire terminals, i.e. detection, grasping, and insertion. First, a pipeline that integrates vision and tactile sensing is developed, then further improvements are proposed for each module. A novel procedure is proposed to gather and label massive amounts of training images for object detection with minimal human intervention. Together with this strategy, we extend a generic object detector based on Convolutional-Neural-Networks for orientation prediction. The insertion task is also extended by developing a closed-loop control capable to guide the insertion of a longer and curved segment of wire through a hole, where the contact forces are estimated by means of a Recurrent-Neural-Network. In the latter part of the thesis, the interest shifts to the DLO shape. Robotic reshaping of a DLO is addressed by means of a sequence of pick-and-place primitives, while a decision making process driven by visual data learns the optimal grasping locations exploiting Deep Q-learning and finds the best releasing point. The success of the solution leverages on a reliable interpretation of the DLO shape. For this reason, further developments are made on the visual segmentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissertation addresses the still not solved challenges concerned with the source-based digital 3D reconstruction, visualisation and documentation in the domain of archaeology, art and architecture history. The emerging BIM methodology and the exchange data format IFC are changing the way of collaboration, visualisation and documentation in the planning, construction and facility management process. The introduction and development of the Semantic Web (Web 3.0), spreading the idea of structured, formalised and linked data, offers semantically enriched human- and machine-readable data. In contrast to civil engineering and cultural heritage, academic object-oriented disciplines, like archaeology, art and architecture history, are acting as outside spectators. Since the 1990s, it has been argued that a 3D model is not likely to be considered a scientific reconstruction unless it is grounded on accurate documentation and visualisation. However, these standards are still missing and the validation of the outcomes is not fulfilled. Meanwhile, the digital research data remain ephemeral and continue to fill the growing digital cemeteries. This study focuses, therefore, on the evaluation of the source-based digital 3D reconstructions and, especially, on uncertainty assessment in the case of hypothetical reconstructions of destroyed or never built artefacts according to scientific principles, making the models shareable and reusable by a potentially wide audience. The work initially focuses on terminology and on the definition of a workflow especially related to the classification and visualisation of uncertainty. The workflow is then applied to specific cases of 3D models uploaded to the DFG repository of the AI Mainz. In this way, the available methods of documenting, visualising and communicating uncertainty are analysed. In the end, this process will lead to a validation or a correction of the workflow and the initial assumptions, but also (dealing with different hypotheses) to a better definition of the levels of uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently making digital 3D models and replicas of the cultural heritage assets play an important role in the preservation and having a high detail source for future research and intervention. In this dissertation, it is tried to assess different methods for digital surveying and making 3D replicas of cultural heritage assets in different scales of size. The methodologies vary in devices, software, workflow, and the amount of skill that is required. The three phases of the 3D modelling process are data acquisition, modelling, and model presentation. Each of these sections is divided into sub-sections and there are several approaches, methods, devices, and software that may be employed, furthermore, the selection process should be based on the operation's goal, available facilities, the scale and properties of the object or structure to be modeled, as well as the operators' expertise and experience. The most key point to remember is that the 3D modelling operation should be properly accurate, precise, and reliable; therefore, there are so many instructions and pieces of advice on how to perform 3D modelling effectively. It is an attempt to compare and evaluate the various ways of each phase in order to explain and demonstrate their differences, benefits, and drawbacks in order to serve as a simple guide for new and/or inexperienced users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent times, a significant research effort has been focused on how deformable linear objects (DLOs) can be manipulated for real world applications such as assembly of wiring harnesses for the automotive and aerospace sector. This represents an open topic because of the difficulties in modelling accurately the behaviour of these objects and simulate a task involving their manipulation, considering a variety of different scenarios. These problems have led to the development of data-driven techniques in which machine learning techniques are exploited to obtain reliable solutions. However, this approach makes the solution difficult to be extended, since the learning must be replicated almost from scratch as the scenario changes. It follows that some model-based methodology must be introduced to generalize the results and reduce the training effort accordingly. The objective of this thesis is to develop a solution for the DLOs manipulation to assemble a wiring harness for the automotive sector based on adaptation of a base trajectory set by means of reinforcement learning methods. The idea is to create a trajectory planning software capable of solving the proposed task, reducing where possible the learning time, which is done in real time, but at the same time presenting suitable performance and reliability. The solution has been implemented on a collaborative 7-DOFs Panda robot at the Laboratory of Automation and Robotics of the University of Bologna. Experimental results are reported showing how the robot is capable of optimizing the manipulation of the DLOs gaining experience along the task repetition, but showing at the same time a high success rate from the very beginning of the learning phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important approach to cancer therapy is the design of small molecule modulators that interfere with microtubule dynamics through their specific binding to the ²-subunit of tubulin. In the present work, comparative molecular field analysis (CoMFA) studies were conducted on a series of discodermolide analogs with antimitotic properties. Significant correlation coefficients were obtained (CoMFA(i), q² =0.68, r²=0.94; CoMFA(ii), q² = 0.63, r²= 0.91), indicating the good internal and external consistency of the models generated using two independent structural alignment strategies. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the 3D contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of discodermolide analogs, and should be useful for the design of new specific ²-tubulin modulators with potent anticancer activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the stress distribution in the cervical region of a sound upper central incisor in two clinical situations, standard and maximum masticatory forces, by means of a 3D model with the highest possible level of fidelity to the anatomic dimensions. Two models with 331,887 linear tetrahedral elements that represent a sound upper central incisor with periodontal ligament, cortical and trabecular bones were loaded at 45º in relation to the tooth's long axis. All structures were considered to be homogeneous and isotropic, with the exception of the enamel (anisotropic). A standard masticatory force (100 N) was simulated on one of the models, while on the other one a maximum masticatory force was simulated (235.9 N). The software used were: PATRAN for pre- and post-processing and Nastran for processing. In the cementoenamel junction area, tensile forces reached 14.7 MPa in the 100 N model, and 40.2 MPa in the 235.9 N model, exceeding the enamel's tensile strength (16.7 MPa). The fact that the stress concentration in the amelodentinal junction exceeded the enamel's tensile strength under simulated conditions of maximum masticatory force suggests the possibility of the occurrence of non-carious cervical lesions such as abfractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the breaking of Lorentz invariance in a 3D model of fermion fields self-coupled through four-fermion interactions. The low-energy limit of the theory contains various submodels which are similar to those used in the study of graphene or in the description of irrational charge fractionalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the role of the dc Stark effect in multilevel pairwise interactions between cold Rydberg atoms. We have observed the decay of nD + nD quasi-molecules by detecting the products in the (n + 2) P state after pulsed excitation for 29 <= n <= 41. The decay rate can be manipulated with a dc electric field and requires a consideration of the multilevel nature of the process to explain the observations. The time dependence of the (n + 2) P signal is found to support a time-dependent picture of the dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M(13). First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first- principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M(13) structures. Several new lower energy configurations were identified, e. g., Pd(13), W(13), Pt(13), etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au(13), we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This text aims to approach museums` role in the production of knowledge and how objects are transformed into documents when museums incorporate them. On accepting the effects of such transformation, museums start working not only with material goods, but also symbolic goods. The collection manager or exhibition curator communicate through documents rather than bringing into light its intrinsic content. In this sense, every process involving museum documents, from the selection of collections to exhibitions, has a rhetoric and ideological nature which is given. Museums must search for meanings through correlations established in the process of producing information. Exhibitions should present objects in multiple contexts, giving visitors the opportunity to participate and attribute their own meanings to them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to directly compare the causes of fatigue after a short- and a long-rest interval between consecutive stretch-shortening cycle exercises. Eleven healthy males jumped with different resting period lengths (short = 6.1 +/- 1 s, long = 8.6 +/- 0.9 s), performing countermovement jumps at 95% of their maximal jump height until they were unable to sustain the target height. After short- and long-rest, the maximal voluntary isometric contraction knee extension torque decreased (-7%; p = 0.04), comparing to values obtained before exercise protocols. No change was seen from pre- to post-exercise, for either short- or long-rest, in biceps femoris coactivation (-1%; p = 0.95), peak-to-peak amplitude (1%; p = 0.95) and duration (-8%; p = 0.92) of the compound muscle action potential of the vastus lateralis. Evoked peak twitch torque reduced after both exercise protocols (short = -26%, long = -32%; p = 0.003) indicating peripheral fatigue. However, central fatigue occurred only after short-rest evidenced by a reduction in voluntary activation of the quadriceps muscle (-14%; p = 0.013) measured using the interpolated twitch technique. In conclusion, after Stretch-shortening cycle exercise using short rest period length, the cause of fatigue was central and peripheral, while after using long rest period length, the cause of fatigue was peripheral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to examine the coupling between visual information and body sway with binocular and monocular vision at two distances from the front wall of a moving room. Ten participants stood as still as possible inside of a moving room facing the front wall in conditions that combined room movement with monocular/binocular vision and distance from the front wall (75 and 150cm). Visual information effect on body sway decreased with monocular vision and with increased distance from the front wall. In addition, the combination of monocular vision with the farther distance resulted in the smallest body sway response to the driving stimulus provided by the moving room. These results suggest that binocularvision near the front wall provides visual information of a better quality than the monocular vision far from the front wall. We discuss the results with respect to two modes of visual detection of body sway: ocular and extraocular. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most ordinary finite element formulations for 3D frame analysis do not consider the warping of cross-sections as part of their kinematics. So the stiffness, regarding torsion, should be directly introduced by the user into the computational software and the bar is treated as it is working under no warping hypothesis. This approach does not give good results for general structural elements applied in engineering. Both displacement and stress calculation reveal sensible deficiencies for both linear and non-linear applications. For linear analysis, displacements can be corrected by assuming a stiffness that results in acceptable global displacements of the analyzed structure. However, the stress calculation will be far from reality. For nonlinear analysis the deficiencies are even worse. In the past forty years, some special structural matrix analysis and finite element formulations have been proposed in literature to include warping and the bending-torsion effects for 3D general frame analysis considering both linear and non-linear situations. In this work, using a kinematics improvement technique, the degree of freedom ""warping intensity"" is introduced following a new approach for 3D frame elements. This degree of freedom is associated with the warping basic mode, a geometric characteristic of the cross-section, It does not have a direct relation with the rate of twist rotation along the longitudinal axis, as in existent formulations. Moreover, a linear strain variation mode is provided for the geometric non-linear approach, for which complete 3D constitutive relation (Saint-Venant Kirchhoff) is adopted. The proposed technique allows the consideration of inhomogeneous cross-sections with any geometry. Various examples are shown to demonstrate the accuracy and applicability of the proposed formulation. (C) 2009 Elsevier Inc. All rights reserved.