988 resultados para 353
Resumo:
Electrochemical oxidation of sodium borohydride (NaBH(4)) and ammonia borane (NH(3)BH(3)) (AB) have been studied on titanium carbide electrode. The oxidation is followed by using cyclic voltammetry, chronoamperometry and polarization measurements. A fuel cell with TiC as anode and 40 wt% Pt/C as cathode is constructed and the polarization behaviour is studied with NaBH(4) as anodic fuel and hydrogen peroxide as catholyte. A maximum power density of 65 mW cm(-2) at a load current density of 83 mA cm(-2) is obtained at 343 K in the case of borhydride-based fuel cell and a value of 85 mW cm(-2) at 105 mA cm(-2) is obtained in the case of AB-based fuel cell at 353 K. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The metal organic frameworks (MOFs) have evolved to be an important family and a corner stone for research in the area of inorganic chemistry. The progress made since 2000 has attracted researchers from other disciplines to actively engage themselves in this area. This cooperative synergy of different scientific believes have provided important edge and spread to the chemistry of metal-organic frameworks. The ease of synthesis coupled with the observation of properties in the areas of catalysis, sorption, separation, luminescence, bioactivity, magnetism, etc., are a proof of this synergism. In this article, we present the recent developments in this area.
Resumo:
Nano-ceramic phosphor CaSiO 3 doped with Pb and Mn was synthesized by the low temperature solution combustion method. The materials were characterized by Powder X-Ray Diffraction (XRD), Thermo-gravimetric and Differential Thermal Analysis (TG-DTA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The Electron Paramagnetic Resonance (EPR) spectrum of the investigated sample exhibits a broad resonance signal centered at g=1.994. The number of spins participating in resonance (N) and its paramagnetic susceptibility (�) have been evaluated. Photoluminescence of doped CaSiO 3 was investigated when excited by UV radiation of 256 nm. The phosphor exhibits an emission peak at 353 nm in the UV range due to Pb 2+. Further, a broad emission peak in the visible range 550-625 nm can be attributed to 4T 1� 6A 1 transition of Mn 2+ ions. The investigation reveals that doping perovskite nano-ceramics with transition metal ions leads to excellent phosphor materials for potential applications. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Luteal insufficiency affects fertility and hence study of mechanisms that regulate corpus luteum (CL) function is of prime importance to overcome infertility problems. Exploration of human genome sequence has helped to study the frequency of single nucleotide polymorphisms (SNPs). Clinical benefits of screening SNPs in infertility are being recognized well in recent times. Examining SNPs in genes associated with maintenance and regression of CL may help to understand unexplained luteal insufficiency and related infertility. Publicly available microarray gene expression databases reveal the global gene expression patterns in primate CL during the different functional state. We intend to explore computationally the deleterious SNPs of human genes reported to be common targets of luteolysin and luteotropin in primate CL Different computational algorithms were used to dissect out the functional significance of SNPs in the luteinizing hormone sensitive genes. The results raise the possibility that screening for SNPs might be integrated to evaluate luteal insufficiency associated with human female infertility for future studies. (C) 2012 Elsevier B.V. All rights reserved,
Resumo:
Porous titanium oxide-carbon hybrid nanostructure (TiO2-C) with a specific surface area of 350 m(2)/g and an average pore-radius of 21 center dot 8 is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2-C supported Pt-Ru electro-catalyst (Pt-Ru/TiO2-C) is obtained and investigated as an anode catalyst for direct methanol fuel cells (DMFCs). X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM) have been employed to evaluate the crystalline nature and the structural properties of TiO2-C. TEM images reveal uniform distribution of Pt-Ru nanoparticles (d (Pt -aEuro parts per thousand Ru) = 1 center dot 5-3 center dot 5 nm) on TiO2-C. Methanol oxidation and accelerated durability studies on Pt-Ru/TiO2-C exhibit enhanced catalytic activity and durability compared to carbon-supported Pt-Ru. DMFC employing Pt-Ru/TiO2-C as an anode catalyst delivers a peak-power density of 91 mW/cm(2) at 65 A degrees C as compared to the peak-power density of 60 mW/cm(2) obtained for the DMFC with carbon-supported Pt-Ru anode catalyst operating under similar conditions.
Resumo:
Ion conducting glasses in xLiCl-20Li(2)O-(80-x) 0.80P(2)O(5)-0.20MoO(3)] glass system have been prepared over a wide range of composition (X = 5, 10, 15, 20 and 25 mol%). The electrical conductivity and dielectric relaxation of these glasses were analyzed using impedance spectroscopy in the frequency range of 10 Hz-10 MHz and in the temperature range of 313-353 K. D.c. activation energies extracted from Arrhenius plots using regression analysis, decreases with increasing LiCl mol%. A.c. conductivity data has been fitted to both single and double power law equation with both fixed and variable parameters. The increased conductivity in the present glass system has been correlated with the volume increasing effect and the coordination changes that occur due to structural modification resulting in the creation of non-bridging oxygens (NBO's) of the type O-Mo-O- bonds in the glass network. Dielectric relaxation mechanism in these glasses is analyzed using Kohlrausch-Williams-Watts (KWW) stretched exponential function and stretched exponent (beta) is found to be insensitive to temperature.
Resumo:
Interdiffusion, intrinsic, tracer and impurity diffusion coefficients are calculated in the Pd-Pt system. Interdiffusion coefficients are more or less insensitive to composition change. Activation energy varies in the range of 324-353 kJ/mol. Impurity diffusion coefficients calculated in this study and available tracer diffusion coefficients in pure elements indicate that Pd has higher diffusion rate compared to Pt in pure Pd, whereas, both the elements have similar diffusion rates in Pt. Kirkendall marker experiments indicate that Pd has much higher diffusion rate in Pd3.5at.%Pt compared to Pt.
Resumo:
In this work, we present the characterization and performance studies of self-priming peristaltic pump for drug delivery application. Conventional materials and methods have been used to fabricate single cam mechanism based peristaltic micropump. To control the fluid flow precisely in micro liter range, a single cam mechanism has been used instead of conventional roller mechanism. The fabricated pump is suitable for liquid, gas and foam. Using water as a fluid medium, a flow rate of 12.5 mu l/rpm is achieved using a flexible silicone tube of inner diameter 1.5 mm and outer diameter 2.5 mm. Other than water, higher viscosity fluids showed a decrease in the flow rate. The designed micropump exhibits a linear dependence of flow rate in the voltage range of 2.5V to 5V. Drug delivery using micropump demands that the micropump has to pump against the blood pressure (maximum of 25kPa) with constant flow rate. Here the designed pump is able to pump the liquid with a constant flow rate of 500 mu l/min (water) up to a backpressure of 40kPa. It was observed that, by increasing the backpressure above 40kPa, flow rate of the pump gradually decreased to 125 mu l/min at 120kPa. In addition, Micropump based drug delivery demands that the micropump should be normally in closed condition in all the positions to avoid drug leakage and bleeding. Hence, micropump has been characterized for normally closed condition in all positions (0 degrees to 360 degrees). However, a minute leak of 0.14 % was found for an inlet pressure of 140kPa. Also, the normally closed region with no leak is observed up to 60kPa of pressure in all positions (0 degrees to 360 degrees).
Resumo:
Topoisomerases are an important class of enzymes for regulating the DNA transaction processes. Mycobacterium tuberculosis (Mtb) is one of the most formidable pathogens also posing serious challenges for therapeutic interventions. The organism contains only one type IA topoisomerase (Rv3646c), offering an opportunity to test its potential as a candidate drug target. To validate the essentiality of M.tuberculosis topoisomerase I (TopoI(Mt)) for bacterial growth and survival, we have generated a conditionally regulated strain of topoI in Mtb. The conditional knockdown mutant exhibited delayed growth on agar plate. In liquid culture, the growth was drastically impaired when TopoI expression was suppressed. Additionally, novobiocin and isoniazid showed enhanced inhibitory potential against the conditional mutant. Analysis of the nucleoid revealed its altered architecture upon TopoI depletion. These studies establish the essentiality of TopoI for the M.tuberculosis growth and open up new avenues for targeting the enzyme.
Resumo:
Using the numerical device simulation we show that the relationship between the surface potentials along the channel in any double gate (DG) MOSFET remains invariant in QS (quasistatic) and NQS (nonquasi-static) condition for the same terminal voltages. This concept along with the recently proposed `piecewise charge linearization' technique is then used to develop the intrinsic NQS charge model for a Independent DG (IDG) MOSFET by solving the governing continuity equation. It is also demonstrated that unlike the usual MOSFET transcapacitances, the inter-gate transcapacitance of a IDG-MOSFET initially increases with the frequency and then saturates, which might find novel analog circuit application. The proposed NQS model shows good agreement with numerical device simulations and appears to be useful for efficient circuit simulation.
Resumo:
Dysprosium oxide (Dy2O3) nanopowders were prepared by co-precipitation (CP) and eco-friendly green combustion (GC) routes. SEM micrographs prepared by CP route show smooth rods with various lengths and diameters while, GC route show porous, agglomerated particles. The results were further confirmed by TEM. Thermoluminescence (TL) responses of the nanopowder prepared by both the routes were studied using gamma-rays. A well resolved glow peak at 353 degrees C along with less intense peak at 183 degrees C was observed in GC route while, in CP a single glow peak at 364 degrees C was observed. The kinetic parameters were estimated using Chen's glow peak route. Photoluminescence (PL) of Dy2O3 shows peaks at 481, 577,666 and 756 nm which were attributed to Dy3+ transitions of F-4(9/2)-H-6(15/2), H-6(11/2), H-6(11/2) and H-6(9/2), respectively. Color co-ordinate values were located in the white region as a result the product may be useful for the fabrication of WLED'S. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Carbon Fiber Reinforced Plastic composites were fabricated through vacuum resin infusion technology by adopting two different processing conditions, viz., vacuum only in the first and vacuum plus external pressure in the next, in order to generate two levels of void-bearing samples. They were relatively graded as higher and lower void-bearing ones, respectively. Microscopy and C-scan techniques were utilized to describe the presence of voids arising from the two different processing parameters. Further, to determine the influence of voids on impact behavior, the fabricated +45 degrees/90 degrees/-45 degrees composite samples were subjected to low velocity impacts. The tests show impact properties like peak load and energy to peak load registering higher values for the lower void-bearing case where as the total energy, energy for propagation and ductility indexes were higher for the higher void-bearing ones. Fractographic analysis showed that higher void-bearing samples display lower number of separation of layers in the laminate. These and other results are described and discussed in this report.
Resumo:
Cells exposed to genotoxic stress induce cellular senescence through a DNA damage response (DDR) pathway regulated by ATM kinase and reactive oxygen species (ROS). Here, we show that the regulatory roles for ATM kinase and ROS differ during induction and maintenance of cellular senescence. Cells treated with different genotoxic agents were analyzed using specific pathway markers and inhibitors to determine that ATM kinase activation is directly proportional to the dose of the genotoxic stress and that senescence initiation is not dependent on ROS or the p53 status of cells. Cells in which ROS was quenched still activated ATM and initiated the DDR when insulted, and progressed normally to senescence. By contrast, maintenance of a viable senescent state required the presence of ROS as well as activated ATM. Inhibition or removal of either of the components caused cell death in senescent cells, through a deregulated ATM-ROS axis. Overall, our work demonstrates existence of an intricate temporal hierarchy between genotoxic stress, DDR and ROS in cellular senescence. Our model reports the existence of different stages of cellular senescence with distinct regulatory networks.
Resumo:
Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T') and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structureproperty relation due to the rich band structure of MoS2. Remarkably, the metastable 1T'-MoS2 metallic state remains invariant with pressure, with the J(2), A(1g), and E(2)g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.
Resumo:
The steady-state negative supercoiling of eubacterial genomes is maintained by the action of DNA topoisomerases. Topoisomerase distribution varies in different species of mycobacteria. While Mycobacterium tuberculosis (Mtb) contains a single type I (Topol) and a single type II (Gyrase) enzyme, Mycobacterium smegmatis (Msm) and other members harbour additional relaxases. Topol is essential for Mtb survival. However, the necessity of Topol or other relaxases in Msm has not been investigated. To recognize the importance of Topol for growth, physiology and gene expression of Msm, we have developed a conditional knock-down strain of Topol in Msm. The Topol-depleted strain exhibited extremely slow growth and drastic changes in phenotypic characteristics. The cessation of growth indicates the essential requirement of the enzyme for the organism in spite of having additional DNA relaxation enzymes in the cell. Notably, the imbalance in Topol level led to the altered expression of topology modulatory proteins, resulting in a diffused nucleoid architecture. Proteomic and transcript analysis of the mutant indicated reduced expression of the genes involved in central metabolic pathways and core DNA transaction processes. RNA polymerase (RNAP) distribution on the transcription units was affected in the Topol-depleted cells, suggesting global alteration in transcription. The study thus highlights the essential requirement of Topol in the maintenance of cellular phenotype, growth characteristics and gene expression in mycobacteria. A decrease in Topol level led to altered RNAP occupancy and impaired transcription elongation, causing severe downstream effects.