812 resultados para 350202 Business Information Systems (incl. Data Processing)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A retrospective, descriptive analysis of a sample of children under 18 years presenting to a hospital emergency department (ED) for treatment of an injury was conducted. The aim was to explore characteristics and identify differences between children assigned abuse codes and children assigned unintentional injury codes using an injury surveillance database. Only 0.1% of children had been assigned the abuse code and 3.9% a code indicating possible abuse. Children between 2-5 years formed the largest proportion of those coded to abuse. Superficial injury and bruising were the most common types of injury seen in children in the abuse group and the possible abuse group (26.9% and 18.8% respectively), whereas those with unintentional injury were most likely to present with open wounds (18.4%). This study demonstrates that routinely collected injury surveillance data can be a useful source of information for describing injury characteristics in children assigned abuse codes compared to those assigned no abuse codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To compare different methods for identifying alcohol involvement in injury-related emergency department presentation in Queensland youth, and to explore the alcohol terminology used in triage text. Methods: Emergency Department Information System data were provided for patients aged 12-24 years with an injury-related diagnosis code for a 5 year period 2006-2010 presenting to a Queensland emergency department (N=348895). Three approaches were used to estimate alcohol involvement: 1) analysis of coded data, 2) mining of triage text, and 3) estimation using an adaptation of alcohol attributable fractions (AAF). Cases were identified as ‘alcohol-involved’ by code and text, as well as AAF weighted. Results: Around 6.4% of these injury presentations overall had some documentation of alcohol involvement, with higher proportions of alcohol involvement documented for 18-24 year olds, females, indigenous youth, where presentations occurred on a Saturday or Sunday, and where presentations occurred between midnight and 5am. The most common alcohol terms identified for all subgroups were generic alcohol terms (eg. ETOH or alcohol) with almost half of the cases where alcohol involvement was documented having a generic alcohol term recorded in the triage text. Conclusions: Emergency department data is a useful source of information for identification of high risk sub-groups to target intervention opportunities, though it is not a reliable source of data for incidence or trend estimation in its current unstandardised form. Improving the accuracy and consistency of identification, documenting and coding of alcohol-involvement at the point of data capture in the emergency department is the most desirable long term approach to produce a more solid evidence base to support policy and practice in this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social Media Analytics ist ein neuer Forschungsbereich, in dem interdisziplinäre Methoden kombiniert, erweitert und angepasst werden, um Social-Media-Daten auszuwerten. Neben der Beantwortung von Forschungsfragen ist es ebenfalls ein Ziel, Architekturentwürfe für die Entwicklung neuer Informationssysteme und Anwendungen bereitzustellen, die auf sozialen Medien basieren. Der Beitrag stellt die wichtigsten Aspekte des Bereichs Social Media Analytics vor und verweist auf die Notwendigkeit einer fächerübergreifenden Forschungsagenda, für deren Erstellung und Bearbeitung der Wirtschaftsinformatik eine wichtige Rolle zukommt.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While data quality has been identified as a critical factor associated with enterprise resource planning (ERP) failure, the relationship between ERP stakeholders, the information they require and its relationship to ERP outcomes continues to be poorly understood. Applying stakeholder theory to the problem of ERP performance, we put forward a framework articulating the fundamental differences in the way users differentiate between ERP data quality and utility. We argue that the failure of ERPs to produce significant organisational outcomes can be attributed to conflict between stakeholder groups over whether the data contained within an ERP is of adequate ‘quality’. The framework provides guidance as how to manage data flows between stakeholders, offering insight into each of their specific data requirements. The framework provides support for the idea that stakeholder affiliation dictates the assumptions and core values held by individuals, driving their data needs and their perceptions of data quality and utility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Detection of outbreaks is an important part of disease surveillance. Although many algorithms have been designed for detecting outbreaks, few have been specifically assessed against diseases that have distinct seasonal incidence patterns, such as those caused by vector-borne pathogens. Methods We applied five previously reported outbreak detection algorithms to Ross River virus (RRV) disease data (1991-2007) for the four local government areas (LGAs) of Brisbane, Emerald, Redland and Townsville in Queensland, Australia. The methods used were the Early Aberration Reporting System (EARS) C1, C2 and C3 methods, negative binomial cusum (NBC), historical limits method (HLM), Poisson outbreak detection (POD) method and the purely temporal SaTScan analysis. Seasonally-adjusted variants of the NBC and SaTScan methods were developed. Some of the algorithms were applied using a range of parameter values, resulting in 17 variants of the five algorithms. Results The 9,188 RRV disease notifications that occurred in the four selected regions over the study period showed marked seasonality, which adversely affected the performance of some of the outbreak detection algorithms. Most of the methods examined were able to detect the same major events. The exception was the seasonally-adjusted NBC methods that detected an excess of short signals. The NBC, POD and temporal SaTScan algorithms were the only methods that consistently had high true positive rates and low false positive and false negative rates across the four study areas. The timeliness of outbreak signals generated by each method was also compared but there was no consistency across outbreaks and LGAs. Conclusions This study has highlighted several issues associated with applying outbreak detection algorithms to seasonal disease data. In lieu of a true gold standard, a quantitative comparison is difficult and caution should be taken when interpreting the true positives, false positives, sensitivity and specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research contributes a fully-operational approach for managing business process risk in near real-time. The approach consists of a language for defining risks on top of process models, a technique to detect such risks as they eventuate during the execution of business processes, a recommender system for making risk-informed decisions, and a technique to automatically mitigate the detected risks when they are no longer tolerable. Through the incorporation of risk management elements in all stages of the lifecycle of business processes, this work contributes to the effective integration of the fields of Business Process Management and Risk Management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – Context-awareness has emerged as an important principle in the design of flexible business processes. The goal of the research is to develop an approach to extend context-aware business process modeling toward location-awareness. The purpose of this paper is to identify and conceptualize location-dependencies in process modeling. Design/methodology/approach – This paper uses a pattern-based approach to identify location-dependency in process models. The authors design specifications for these patterns. The authors present illustrative examples and evaluate the identified patterns through a literature review of published process cases. Findings – This paper introduces location-awareness as a new perspective to extend context-awareness in BPM research, by introducing relevant location concepts such as location-awareness and location-dependencies. The authors identify five basic location-dependent control-flow patterns that can be captured in process models. And the authors identify location-dependencies in several existing case studies of business processes. Research limitations/implications – The authors focus exclusively on the control-flow perspective of process models. Further work needs to extend the research to address location-dependencies in process data or resources. Further empirical work is needed to explore determinants and consequences of the modeling of location-dependencies. Originality/value – As existing literature mostly focusses on the broad context of business process, location in process modeling still is treated as “second class citizen” in theory and in practice. This paper discusses the vital role of location-dependencies within business processes. The proposed five basic location-dependent control-flow patterns are novel and useful to explain location-dependency in business process models. They provide a conceptual basis for further exploration of location-awareness in the management of business processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article provides a general review of the literature on the nature and role of empathy in social interaction for information professionals working in a variety of information and knowledge environments. Relational agency theory (Edwards, 2005) is used asa framework to re-conceptualize education for empathic social interaction between information professionals and their clients. Past, present and future issues relevant to empathic interaction in information and knowledge management are discussed in the context of three shifts identified from the literature: (a) the continued increase in communication channels, both physical and virtual, for reference, information and re-search services, (b) the transition from the information age to the conceptual age and(c) the growing need for understanding of the affective paradigm in the information and knowledge professions. Findings from the literature review on the relationships between empathy and information behavior, social networking, knowledge management and information and knowledge services are presented. Findings are discussed in relation to the development of guidelines for the affective education and training of information and knowledge professionals and the potential use of virtual learning software such as Second Life in developing empathic communication skills

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DeLone and McLean (D&M) model (2003) has been broadly used and generally recognised as a useful model for gauging the success of IS implementations. However, it is not without limitations. In this study, we evaluate a model that extends the D&M model and attempts to address some of it slimitations by providing a more complete measurement model of systems success. To that end, we augment the D&M (2003) model and include three variables: business value, institutional trust, and future readiness. We propose that the addition of these variables allows systems success to be assessed at both the systems level and the business level. Consequently, we develop a measurement model rather than a structural or predictive model of systems success.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To synthesise recent research on the use of machine learning approaches to mining textual injury surveillance data. Design Systematic review. Data sources The electronic databases which were searched included PubMed, Cinahl, Medline, Google Scholar, and Proquest. The bibliography of all relevant articles was examined and associated articles were identified using a snowballing technique. Selection criteria For inclusion, articles were required to meet the following criteria: (a) used a health-related database, (b) focused on injury-related cases, AND used machine learning approaches to analyse textual data. Methods The papers identified through the search were screened resulting in 16 papers selected for review. Articles were reviewed to describe the databases and methodology used, the strength and limitations of different techniques, and quality assurance approaches used. Due to heterogeneity between studies meta-analysis was not performed. Results Occupational injuries were the focus of half of the machine learning studies and the most common methods described were Bayesian probability or Bayesian network based methods to either predict injury categories or extract common injury scenarios. Models were evaluated through either comparison with gold standard data or content expert evaluation or statistical measures of quality. Machine learning was found to provide high precision and accuracy when predicting a small number of categories, was valuable for visualisation of injury patterns and prediction of future outcomes. However, difficulties related to generalizability, source data quality, complexity of models and integration of content and technical knowledge were discussed. Conclusions The use of narrative text for injury surveillance has grown in popularity, complexity and quality over recent years. With advances in data mining techniques, increased capacity for analysis of large databases, and involvement of computer scientists in the injury prevention field, along with more comprehensive use and description of quality assurance methods in text mining approaches, it is likely that we will see a continued growth and advancement in knowledge of text mining in the injury field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Narrative text is a useful way of identifying injury circumstances from the routine emergency department data collections. Automatically classifying narratives based on machine learning techniques is a promising technique, which can consequently reduce the tedious manual classification process. Existing works focus on using Naive Bayes which does not always offer the best performance. This paper proposes the Matrix Factorization approaches along with a learning enhancement process for this task. The results are compared with the performance of various other classification approaches. The impact on the classification results from the parameters setting during the classification of a medical text dataset is discussed. With the selection of right dimension k, Non Negative Matrix Factorization-model method achieves 10 CV accuracy of 0.93.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a modified Kano approach to analysing and classifying quality attributes that drive student satisfaction in tertiary education. The approach provides several benefits over the traditional Kano approach. Firstly, it uses existing student evaluations of subjects in the educational institution instead of purpose-built surveys as the data source. Secondly, since the data source includes qualitative comments and feedback, it has the exploratory capability to identify emerging and unique attributes. Finally, since the quality attributes identified could be tied directly to students’ detailed feedback, the approach enables practitioners to easily translate the results into concrete action plans. In this paper, the approach is applied to analysing 26 subjects in the information systems school of an Australia university. The approach has enabled the school to uncover new quality attributes and paves the way for other institutions to use their student evaluations to continually understand and addressed students’ changing needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliance on police data for the counting of road crash injuries can be problematic, as it is well known that not all road crash injuries are reported to police which under-estimates the overall burden of road crash injuries. The aim of this study was to use multiple linked data sources to estimate the extent of under-reporting of road crash injuries to police in the Australian state of Queensland. Data from the Queensland Road Crash Database (QRCD), the Queensland Hospital Admitted Patients Data Collection (QHAPDC), Emergency Department Information System (EDIS), and the Queensland Injury Surveillance Unit (QISU) for the year 2009 were linked. The completeness of road crash cases reported to police was examined via discordance rates between the police data (QRCD) and the hospital data collections. In addition, the potential bias of this discordance (under-reporting) was assessed based on gender, age, road user group, and regional location. Results showed that the level of under-reporting varied depending on the data set with which the police data was compared. When all hospital data collections are examined together the estimated population of road crash injuries was approximately 28,000, with around two-thirds not linking to any record in the police data. The results also showed that the under-reporting was more likely for motorcyclists, cyclists, males, young people, and injuries occurring in Remote and Inner Regional areas. These results have important implications for road safety research and policy in terms of: prioritising funding and resources; targeting road safety interventions into areas of higher risk; and estimating the burden of road crash injuries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in data center dependent services has made energy optimization of data centers one of the most exigent challenges in today's Information Age. The necessity of green and energy-efficient measures is very high for reducing carbon footprint and exorbitant energy costs. However, inefficient application management of data centers results in high energy consumption and low resource utilization efficiency. Unfortunately, in most cases, deploying an energy-efficient application management solution inevitably degrades the resource utilization efficiency of the data centers. To address this problem, a Penalty-based Genetic Algorithm (GA) is presented in this paper to solve a defined profile-based application assignment problem whilst maintaining a trade-off between the power consumption performance and resource utilization performance. Case studies show that the penalty-based GA is highly scalable and provides 16% to 32% better solutions than a greedy algorithm.