824 resultados para 321404 Sport and Exercise Psychology
Resumo:
We examined the effect of recombinant human growth hormone (rhGH) and/or recombinant human insulin-like growth factor-I (rhIGF-I) on regional fat loss in postmenopausal women undergoing a weight loss regimen of diet plus exercise. Twenty-seven women aged 59-79 years, 20-40% above ideal body weight, completed a 12-week program consisting of resistance training 2 days/week and walking 3 days/week, while consuming a diet that was 500 kcal/day less than that required for weight maintenance, Participants were randomly assigned in a double-blind fashion to receive rhGH (0.025 mg/kg BW/day: n=7), rhIGF-I (0.015 mg/kg BW/day: n=7), rhGH + rhIGF-I (n = 6), or placebo (PL: n = 7). Regional and whole body fat mass were determined by dual X-ray absorptiometry. Body fat distribution was assessed by the ratios of trunk fat-to-limb fat (TrF/LimbF) and trunk fat-to-total fat (TrF/TotF), Limb and trunk fat decreased in all groups (p < 0.01). For both ratios of fat distribution, the rhGH treated group experienced an enhanced loss of truncal compared to peripheral fat (p less than or equal to 0.01), with no significant change for those administered rhIGF-I or FL. There was no association between change in fat distribution and indices of cardiovascular disease risk as determined by serum lipid/lipoprotein levels and maximal aerobic capacity. These results suggest that administration of rhGH facilitates a decrease in central compared to peripheral fat in older women undertaking a weight loss program that combines exercise and moderate caloric restriction, although no beneficial effects are conferred to lipid/lipoprotein profiles, Further, the effect of rhGH is not enhanced by combining rhCH with rhIGF-I administration. In addition, rhIGF-I does not augment the loss of trunk fat when administered alone.
Resumo:
In recent years, beta-blocker therapy has become a primary pharmacologic intervention in patients with heart failure by blocking the sympathetic activity. To compare the exercise training`s sympathetic blockade in healthy subjects (athletes) and the carvedilol`s sympathetic blockade in sedentary heart failure patients by the evaluation of the heart rate dynamic during an exercise test. A total of 26 optimized and 49 nonoptimized heart failure patients in a stable condition (for, at least, 3 months), 15 healthy athletes and 17 sedentary healthy subjects were recruited to perform a cardiopulmonary exercise test. The heart rate dynamic (rest, reserve, peak and the peak heart rate in relation to the maximum predicted for age) was analyzed and compared between the four groups. The heart rate reserve was the same between optimized (48 +/- 15) and nonoptimized (49 +/- 18) heart failure patients (P < 0.0001). The athletes (188 +/- 9) showed a larger heart rate reserve compared to sedentary healthy subjects (92 +/- 10, P < 0.0001). Athletes and healthy sedentary reached the maximum age-predicted heart ratefor their age, but none of the heart failure patients did. The carvedilol`s sympathetic blockade occurred during the rest and during the peak effort in the same proportion, but the exercise training`s sympathetic blockade in healthy subjects occurred mainly in the rest.
Resumo:
Background: A previous study associated CD34(+) levels with NYHA functional class in heart failure patients. The aim of this study was to correlate CD34(+) levels to exercise capacity, functional class, quality of life and norepinephrine in heart failure patients. Methods: Twenty three sedentary patients (52 +/- 7 years, 78% male) answered the Minnesota Living with Heart Failure Questionnaire and rested for 20 minutes before an investigator collect a blood sample. After this, patients performed a cardiopulmonary exercise test to determine the heart rate at anaerobic and ventilatory threshold and oxygen consumption at peak effort, at anaerobic and ventilatory threshold. One other blood sample was collected during the peak effort to investigate the norepinephrine and CD34(+) levels. Results: Rest percentage of CD34(+) did not show correlation with: left ventricle ejection fraction (r = 0.03, p = 0.888), peakVO(2) (r = 0.32, p = 0.13), VO(2) at anaerobic threshold (VO(2)AT) (r = 0.03, p = 0.86), VO(2) at ventilatory threshold (VO(2)VT) (r = 0.36, p = 0.08), NYHA functional class (r = -0.2, p = 0.35), quality of life (Minnesota) (r = -0.17, p = 0.42). CD34(+) did not show correlation, either, with: peak VO(2) (r = 0.38, p = 0.06), VO(2)AT (r = 0.09, p = 0.65), VO(2)VT (r = 0.43, p = 0.4), NYHA functional class (r = -0.13, p = 0.54), quality of life (r = 0.00, p = 0.99). Conclusions: CD34(+) levels did not correlate with exercise capacity, functional class, quality of life and norepinephrine. Percentage of CD34(+) levels did not increase during the cardiopulmonary exercise test in heart failure patients. (Cardiol J 2009; 16, 5: 426-431)
Resumo:
Background Patients with known or suspected coronary disease are often investigated to facilitate risk assessment. We sought to examine the cost-effectiveness of strategies based on exercise echocardiography and exercise electrocardiography. Methods and results We studied 7656 patients undergoing exercise testing; of whom half underwent exercise echocardiography. Risk was defined with the Duke treadmill score for those undergoing exercise electrocardiography alone, and by the extent of ischaemia by exercise echocardiography. Cox proportional hazards models, risk adjusted for pretest likelihood of coronary artery disease, were used to estimate time to cardiac death or myocardial infarction. Costs (including diagnostic and revascularisation procedures, hospitalisations, and events) were calculated, inflation-corrected to year 2000 using Medicare trust fund rates and discounted at a rate of 5%. A decision model was employed to assess the marginal cost effectiveness (cost/life year saved) of exercise echo compared with exercise electrocardiography. Exercise echocardiography identified more patients as low-risk (51% vs 24%, p<0.001), and fewer as intermediate- (27% vs 51%, p<0.001) and high-risk (22% vs 4%); survival was greater in low- and intermediate- risk and less in high-risk patients. Although initial procedural costs and revascularisation costs (in intermediate- high risk patients) were greater, exercise echocardiography was associated with a greater incremental life expectancy (0.2 years) and a lower use of additional diagnostic procedures when compared with exercise electrocardiography (especially in lower risk patients). Using decision analysis, exercise echocardiography (Euro 2615/life year saved) was more cost effective than exercise electrocardiography. Conclusion Exercise echocardiography may enhance cost-effectiveness for the detection and management of at risk patients with known or suspected coronary disease. (C) 2003 Published by Elsevier Science Ltd on behalf of The European Society of Cardiology.
Resumo:
Background Exercise testing has limited efficacy for identifying coronary artery disease (CAD) in the absence of anginal. symptoms. Exercise echocardiography is more accurate than standard exercise testing, but its efficacy in this situation has not been defined. We sought to identify whether the Duke treadmill. score or exercise echocardiography (ExE) could be used to identify risk in patients without anginal symptoms. Methods We studied 1859 patients without typical or atypical angina, heart failure, or a history or ECG evidence of infarction or CAD, who were referred for ExE, of whom 1832 (age 51 15 years, 944 men) were followed for up to 10 years. The presence and extent of ischaemia and scar were interpreted by expert reviewers at the time of the original study. Results Exercise provoked significant (>0.1 mV) ST segment depression in 215 patients (12%), and wall motion abnormalities in 137 (8%). Seventy-eight patients (4%) died before revascularization, only 17 from known cardiac causes. The independent predictors of death were age (RR 1.1, p
Resumo:
Improving the treatment of obesity remains a critical challenge. Several health behaviour change models, often based on a social-cognitive framework, have been used to design weight management interventions (Baranowski et al., 2003). However, most interventions have only produced modest weight reductions (Wadden et al., 2002) and socialcognitive variables have shown limited power to predict weight outcomes (Palmeira et al., 2007). Other predictors, and possibl alte nati e e planatory models, are needed to better understand the mechanisms by which weight loss and other obesity treatment-outcomes are brought about (Baranowski, 2006). Self-esteem is one of these possible mechanisms, because is commonly reported to change during the treatment, although these changes are not necessarily associated with weight loss (Blaine et al., 2007; Maciejewski et al., 2005). This possibility should be more evident if the program integrates regular exercise, as it promotes improvements in subjective well-being (Biddle & Mutrie, 2001), with possible influences on long-term behavioral adherence (e.g. diet, exercise). Following the reciprocal effects model tenets (Marsh & Craven, 2006), we expect that the influences between changes in weight, selfesteem and exercise to be reciprocal and might present one of the mechanisms by which obesity treatments can be improved.
Resumo:
The industry of ergogenic supplements is increasing rapidly (Cole et al., 2003). Supplements may constitute an important aid for some vigourous exercise routines, but they may also be used as a hypothetical mean to achieve increases in muscular mass. This supposed effect of suplements can lead to its use by individuals who have high levels of drive for muscularity, a condition that is known to be associated with muscular dismorphy (or as it has been called recently vigorexia, Pope et al., 1997). Another psychological factor which can influence supplement consumption is exercise dependence, a borderline problem, as most studies present a prevalence of less than 10% in regular exercisers (Palmeira & Matos, 2006). Symptoms like tolerance or continuity could lead to the use of ergogenic aids to maintain the exercise levels. Also of interest for the understanding of the use of suplements are exercise frequency, volume and intensity, which could explain the ratesof consumption on a more physicological level.
Resumo:
Roots and rituals.The construction of ethnic identities, Ton Dekker, John Helsloot Carla Wijers editors, p. 267-268; Selected papers of the 6TH SIEF conference on 'Roots & rituals', Amsterdam 20-25 April 1998.
Resumo:
Introduction The association of the Mediterranean diet and exercise appears to have a protective role, reducing cardiovascular risk. This study investigated the effects of education sessions on the Mediterranean diet and an exercise program in modifying eating behaviors, body composition and abdominal fat. Methods An experimental study was performed on 20 subjects with known coronary heart disease randomly assigned to experimental (n=10) and control (n=10) groups. Both groups received education sessions on the Mediterranean diet, but the experimental group also followed an eight-week program of specific exercises. A semiquantitative food frequency questionnaire was administered to analyze food intake, bioimpedance was used to measure weight, fat mass and lean mass, and waist circumference was measured to calculate waist-to-height ratio. Results After eight weeks, protein (p<0.05) and cholesterol (p<0.05) intake in the experimental group had decreased significantly compared with the control group. Between the beginning and end of the study, there were significant decreases in the control group in carbohydrate (p<0.05) and saturated fat intake (p<0.05). In both groups the percentage of total fat (p<0.05) and fat mass (p<0.05) was significantly decreased. In the experimental group the waist-to-height ratio was significantly reduced (p<0.05). Conclusion The Mediterranean diet reduced carbohydrate and saturated fat intake, reflected in reduced fat mass. The association of the exercise program showed additional benefits in reduction of protein and cholesterol intake and abdominal fat.