985 resultados para 291803 Turbulent Flows
Resumo:
The computation of both transient and steady turbulent incompressible isothermal flows is studied. The flow is very complex, having streamline curvature, large vortex structures and stagnation resulting from an impinging rectangular jet. For transient computations, the standard k-ε model is adopted. For steady flows, the k-ε, high and low Reynolds number k-l and mixing length models are tried. Zonal approaches combining the above turbulence models are also investigated. None of the models are found to give satisfactory agreement with velocity measurements.
Resumo:
The now and heat transfer characteristics of China No. 3 aviation kerosene in a heated curved tube under supercritical pressure are numerically investigated by a finite volume method. A two-layer turbulence model, consisting of the RNG k-epsilon two-equation model and the Wolfstein one-equation model, is used for the simulation of turbulence. A 10-species kerosene surrogate model and the NIST Supertrapp software are applied to obtain the thermophysical and transport properties of the kerosene at various temperature under a supercritical pressure of 4 MPa. The large variation of thermophysical properties of the kerosene at the supercritical pressure make the flow and heat transfer more complicated, especially under the effects of buoyancy and centrifugal force. The centrifugal force enhances the heat transfer, but also increases the friction factors. The rise of the velocity caused by the variation of the density does not enhance the effects of the centrifugal force when the curvature ratios are less than 0.05. On the contrary, the variation of the density increases the effects of the buoyancy. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The role of magnetohydrodynamics (MHD) turbulence in astrophysical environments is still highly debated. An important question that permeates this debate is the transport of magnetic flux. This is particularly important, for instance, in the context of star formation. When clouds collapse gravitationally to form stars, there must be some magnetic flux transport. Otherwise, the newborn stars would have magnetic fields several orders of magnitude larger than the observed ones. Also, the magnetic flux that is dragged in the late stages of the formation of a star can remove all the rotational support from the accretion disc that grows around the protostar. The efficiency of the mechanism that is often invoked to allow transport of magnetic fields at different stages of star formation, namely ambipolar diffusion, has recently been put in check. We discuss here an alternative mechanism for magnetic flux transport which is based on turbulent fast magnetic reconnection. We review recent results from three-dimensional MHD numerical simulations that indicate that this mechanism is very efficient in decoupling and transporting magnetic flux from the inner denser regions to the outskirts of collapsing clouds at different stages of star formation. We discuss this mechanism also in the context of dynamo processes and speculate that it can play a role both in solar dynamo and in accretion disc dynamo processes.
Resumo:
A way to investigate turbulence is through experiments where hot wire measurements are performed. Analysis of the in turbulence of a temperature gradient on hot wire measurements is the aim of this thesis work. Actually - to author's knowledge - this investigation is the first attempt to document, understand and ultimately correct the effect of temperature gradients on turbulence statistics. However a numerical approach is used since instantaneous temperature and streamwise velocity fields are required to evaluate this effect. A channel flow simulation at Re_tau = 180 is analyzed to make a first evaluation of the amount of error introduced by temperature gradient inside the domain. Hot wire data field is obtained processing the numerical flow field through the application of a proper version of the King's law, which connect voltage, velocity and temperature. A drift in mean streamwise velocity profile and rms is observed when temperature correction is performed by means of centerline temperature. A correct mean velocity pro�le is achieved correcting temperature through its mean value at each wall normal position, but a not negligible error is still present into rms. The key point to correct properly the sensed velocity from the hot wire is the knowledge of the instantaneous temperature field. For this purpose three correction methods are proposed. At the end a numerical simulation at Re_tau =590 is also evaluated in order to confirm the results discussed earlier.
Resumo:
We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re D = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.
Resumo:
The dispersion of solid particles in the turbulent recirculation zones of sudden expansion pipes can be characterized by different Stokes numbers and mean drift parameter and its study is important because this kind of flows appears in many technological applications.
Resumo:
In this work, various turbulent solutions of the two-dimensional (2D) and three-dimensional compressible Reynolds averaged Navier?Stokes equations are analyzed using global stability theory. This analysis is motivated by the onset of flow unsteadiness (Hopf bifurcation) for transonic buffet conditions where moderately high Reynolds numbers and compressible effects must be considered. The buffet phenomenon involves a complex interaction between the separated flow and a shock wave. The efficient numerical methodology presented in this paper predicts the critical parameters, namely, the angle of attack and Mach and Reynolds numbers beyond which the onset of flow unsteadiness appears. The geometry, a NACA0012 profile, and flow parameters selected reproduce situations of practical interest for aeronautical applications. The numerical computation is performed in three steps. First, a steady baseflow solution is obtained; second, the Jacobian matrix for the RANS equations based on a finite volume discretization is computed; and finally, the generalized eigenvalue problem is derived when the baseflow is linearly perturbed. The methodology is validated predicting the 2D Hopf bifurcation for a circular cylinder under laminar flow condition. This benchmark shows good agreement with the previous published computations and experimental data. In the transonic buffet case, the baseflow is computed using the Spalart?Allmaras turbulence model and represents a mean flow where the high frequency content and length scales of the order of the shear-layer thickness have been averaged. The lower frequency content is assumed to be decoupled from the high frequencies, thus allowing a stability analysis to be performed on the low frequency range. In addition, results of the corresponding adjoint problem and the sensitivity map are provided for the first time for the buffet problem. Finally, an extruded three-dimensional geometry of the NACA0012 airfoil, where all velocity components are considered, was also analyzed as a Triglobal stability case, and the outcoming results were compared to the previous 2D limited model, confirming that the buffet onset is well detected.
Resumo:
La aparición de inestabilidades en un flujo es un problema importante que puede afectar a algunas aplicaciones aerodinámicas. De hecho existen diferentes tipos de fenómenos no-estacionarios que actualmente son tema de investigación; casos como la separación a altos ángulos de ataque o el buffet transónico son dos ejemplos de cierta relevancia. El análisis de estabilidad global permite identificar la aparición de dichas condiciones inestables, proporcionando información importante sobre la región donde la inestabilidad es dominante y sobre la frecuencia del fenómeno inestable. La metodología empleada es capaz de calcular un flujo base promediado mediante una discretización con volúmenes finitos y posteriormente la solución de un problema de autovalores asociado a la linealización que aparece al perturbar el flujo base. El cálculo numérico se puede dividir en tres pasos: primero se calcula una solución estacionaria para las ecuaciones RANS, luego se extrae la matriz del Jacobiano que representa el problema linealizado y finalmente se deriva y se resuelve el problema de autovalores generalizado mediante el método iterativo de Arnoldi. Como primer caso de validación, la técnica descrita ha sido aplicada a un cilindro circular en condiciones laminares para detectar el principio de las oscilaciones de los vórtices de von Karman, y se han comparado los resultados con experimentos y cálculos anteriores. La parte más importante del estudio se centra en el análisis de flujos compresibles en régimen turbulento. La predicción de la aparición y la progresión de flujo separado a altos ángulos de ataque se han estudiado en el perfil NACA0012 en condiciones tanto subsónicas como supersónicas y en una sección del ala del A310 en condiciones de despegue. Para todas las geometrías analizadas, se ha podido observar que la separación gradual genera la aparición de un modo inestable específico para altos ángulos de ataque siempre mayores que el ángulo asociado al máximo coeficiente de sustentación. Además, se ha estudiado el problema adjunto para obtener información sobre la zona donde una fuerza externa provoca el máximo cambio en el campo fluido. El estudio se ha completado calculando el mapa de sensibilidad estructural y localizando el centro de la inestabilidad. En el presente trabajo de tesis se ha analizado otro importante fenómeno: el buffet transónico. En condiciones transónicas, la interacción entre la onda de choque y la capa límite genera una oscilación de la posición de la onda de choque y, por consiguiente, de las fuerzas aerodinámicas. El conocimiento de las condiciones críticas y su origen puede ayudar a evitar la oscilación causada por estas fuerzas. Las condiciones para las cuales comienza la inestabilidad han sido calculadas y comparadas con trabajos anteriores. Por otra parte, los resultados del correspondiente problema adjunto y el mapa de sensibilidad se han obtenido por primera vez para el buffet, indicando la región del dominio que sera necesario modificar para crear el mayor cambio en las propiedades del campo fluido. Dado el gran consumo de memoria requerido para los casos 3D, se ha realizado un estudio sobre la reducción del domino con la finalidad de reducirlo a la región donde está localizada la inestabilidad. La eficacia de dicha reducción de dominio ha sido evaluada investigando el cambio en la dimensión de la matriz del Jacobiano, no resultando muy eficiente en términos del consumo de memoria. Dado que el buffet es un problema en general tridimensional, el análisis TriGlobal de una geometría 3D podría considerarse el auténtico reto futuro. Como aproximación al problema, un primer estudio se ha realizado empleando una geometría tridimensional extruida del NACA00f2. El cálculo del flujo 3D y, por primera vez en casos tridimensionales compresibles y turbulentos, el análisis de estabilidad TriGlobal, se han llevado a cabo. La comparación de los resultados obtenidos con los resultados del anterior modelo 2D, ha permitido, primero, verificar la exactitud del cálculo 2D realizado anteriormente y también ha proporcionado una estimación del consumo de memoria requerido para el caso 3D. ABSTRACT Flow unsteadiness is an important problem in aerodynamic applications. In fact, there are several types of unsteady phenomena that are still at the cutting edge of research in the field; separation at high angles of attack and transonic buffet are two important examples. Global Stability Analysis can identify the unstable onset conditions, providing important information about the instability location in the domain and the frequency of the unstable phenomenon. The methodology computes a base flow averaged state based on a finite volume discretization and a solution for a generalized eigenvalue problem corresponding to the perturbed linearized equations. The numerical computation is then performed in three steps: first, a steady solution for the RANS equation is computed; second, the Jacobian matrix that represents the linearized problem is obtained; and finally, the generalized eigenvalue problem is derived and solved with an Arnoldi iterative method. As a first validation test, the technique has been applied on a laminar circular cylinder in order to detect the von Karman vortex shedding onset, comparing the results with experiments and with previous calculations. The main part of the study focusses on turbulent and compressible cases. The prediction of the origin and progression of separated flows at high angles of attack has been studied on the NACA0012 airfoil at subsonic and transonic conditions and for the A310 airfoil in take-off configuration. For all the analyzed geometries, it has been found that gradual separation generates the appearance of one specific unstable mode for angles of attack always greater than the ones related to the maximum lift coefficient. In addition, the adjoint problem has been studied to suggest the location of an external force that results in the largest change to the flow field. From the direct and the adjoint analysis the structural sensitivity map has been computed and the core of the instability has been located. The other important phenomenon analyzed in this work is the transonic buffet. In transonic conditions, the interaction between the shock wave and the boundary layer leads to an oscillation of the shock location and, consequently, of the aerodynamic forces. Knowing the critical operational conditions and its origin can be helpful in preventing such fluctuating forces. The instability onset has then been computed and compared with the literature. Moreover, results of the corresponding adjoint problem and a sensitivity map have been provided for the first time for the buffet problem, indicating the region that must be modified to create the biggest change in flow field properties. Because of the large memory consumption required when a 3D case is approached, a domain reduction study has been carried out with the aim of limiting the domain size to the region where the instability is located. The effectiveness of the domain reduction has been evaluated by investigating the change in the Jacobian matrix size, not being very efficient in terms of memory consumption. Since buffet is a three-dimensional problem, TriGlobal stability analysis can be seen as a future challenge. To approximate the problem, a first study has been carried out on an extruded three-dimensional geometry of the NACA0012 airfoil. The 3D flow computation and the TriGlobal stability analysis have been performed for the first time on a compressible and turbulent 3D case. The results have been compared with a 2D model, confirming that the buffet onset evaluated in the 2D case is well detected. Moreover, the computation has given an indication about the memory consumption for a 3D case.
Resumo:
The study of passive scalar transport in a turbulent velocity field leads naturally to the notion of generalized flows, which are families of probability distributions on the space of solutions to the associated ordinary differential equations which no longer satisfy the uniqueness theorem for ordinary differential equations. Two most natural regularizations of this problem, namely the regularization via adding small molecular diffusion and the regularization via smoothing out the velocity field, are considered. White-in-time random velocity fields are used as an example to examine the variety of phenomena that take place when the velocity field is not spatially regular. Three different regimes, characterized by their degrees of compressibility, are isolated in the parameter space. In the regime of intermediate compressibility, the two different regularizations give rise to two different scaling behaviors for the structure functions of the passive scalar. Physically, this means that the scaling depends on Prandtl number. In the other two regimes, the two different regularizations give rise to the same generalized flows even though the sense of convergence can be very different. The “one force, one solution” principle is established for the scalar field in the weakly compressible regime, and for the difference of the scalar in the strongly compressible regime, which is the regime of inverse cascade. Existence and uniqueness of an invariant measure are also proved in these regimes when the transport equation is suitably forced. Finally incomplete self similarity in the sense of Barenblatt and Chorin is established.
Resumo:
An experimental investigation has been made of a round, non-buoyant plume of nitric oxide, NO, in a turbulent grid flow of ozone, 03, using the Turbulent Smog Chamber at the University of Sydney. The measurements have been made at a resolution not previously reported in the literature. The reaction is conducted at non-equilibrium so there is significant interaction between turbulent mixing and chemical reaction. The plume has been characterized by a set of constant initial reactant concentration measurements consisting of radial profiles at various axial locations. Whole plume behaviour can thus be characterized and parameters are selected for a second set of fixed physical location measurements where the effects of varying the initial reactant concentrations are investigated. Careful experiment design and specially developed chemilurninescent analysers, which measure fluctuating concentrations of reactive scalars, ensure that spatial and temporal resolutions are adequate to measure the quantities of interest. Conserved scalar theory is used to define a conserved scalar from the measured reactive scalars and to define frozen, equilibrium and reaction dominated cases for the reactive scalars. Reactive scalar means and the mean reaction rate are bounded by frozen and equilibrium limits but this is not always the case for the reactant variances and covariances. The plume reactant statistics are closer to the equilibrium limit than those for the ambient reactant. The covariance term in the mean reaction rate is found to be negative and significant for all measurements made. The Toor closure was found to overestimate the mean reaction rate by 15 to 65%. Gradient model turbulent diffusivities had significant scatter and were not observed to be affected by reaction. The ratio of turbulent diffusivities for the conserved scalar mean and that for the r.m.s. was found to be approximately 1. Estimates of the ratio of the dissipation timescales of around 2 were found downstream. Estimates of the correlation coefficient between the conserved scalar and its dissipation (parallel to the mean flow) were found to be between 0.25 and the significant value of 0.5. Scalar dissipations for non-reactive and reactive scalars were found to be significantly different. Conditional statistics are found to be a useful way of investigating the reactive behaviour of the plume, effectively decoupling the interaction of chemical reaction and turbulent mixing. It is found that conditional reactive scalar means lack significant transverse dependence as has previously been found theoretically by Klimenko (1995). It is also found that conditional variance around the conditional reactive scalar means is relatively small, simplifying the closure for the conditional reaction rate. These properties are important for the Conditional Moment Closure (CMC) model for turbulent reacting flows recently proposed by Klimenko (1990) and Bilger (1993). Preliminary CMC model calculations are carried out for this flow using a simple model for the conditional scalar dissipation. Model predictions and measured conditional reactive scalar means compare favorably. The reaction dominated limit is found to indicate the maximum reactedness of a reactive scalar and is a limiting case of the CMC model. Conventional (unconditional) reactive scalar means obtained from the preliminary CMC predictions using the conserved scalar p.d.f. compare favorably with those found from experiment except where measuring position is relatively far upstream of the stoichiometric distance. Recommendations include applying a full CMC model to the flow and investigations both of the less significant terms in the conditional mean species equation and the small variation of the conditional mean with radius. Forms for the p.d.f.s, in addition to those found from experiments, could be useful for extending the CMC model to reactive flows in the atmosphere.
Resumo:
The flood flow in urbanised areas constitutes a major hazard to the population and infrastructure as seen during the summer 2010-2011 floods in Queensland (Australia). Flood flows in urban environments have been studied relatively recently, although no study considered the impact of turbulence in the flow. During the 12-13 January 2011 flood of the Brisbane River, some turbulence measurements were conducted in an inundated urban environment in Gardens Point Road next to Brisbane's central business district (CBD) at relatively high frequency (50 Hz). The properties of the sediment flood deposits were characterised and the acoustic Doppler velocimeter unit was calibrated to obtain both instantaneous velocity components and suspended sediment concentration in the same sampling volume with the same temporal resolution. While the flow motion in Gardens Point Road was subcritical, the water elevations and velocities fluctuated with a distinctive period between 50 and 80 s. The low frequency fluctuations were linked with some local topographic effects: i.e, some local choke induced by an upstream constriction between stairwells caused some slow oscillations with a period close to the natural sloshing period of the car park. The instantaneous velocity data were analysed using a triple decomposition, and the same triple decomposition was applied to the water depth, velocity flux, suspended sediment concentration and suspended sediment flux data. The velocity fluctuation data showed a large energy component in the slow fluctuation range. For the first two tests at z = 0.35 m, the turbulence data suggested some isotropy. At z = 0.083 m, on the other hand, the findings indicated some flow anisotropy. The suspended sediment concentration (SSC) data presented a general trend with increasing SSC for decreasing water depth. During a test (T4), some long -period oscillations were observed with a period about 18 minutes. The cause of these oscillations remains unknown to the authors. The last test (T5) took place in very shallow waters and high suspended sediment concentrations. It is suggested that the flow in the car park was disconnected from the main channel. Overall the flow conditions at the sampling sites corresponded to a specific momentum between 0.2 to 0.4 m2 which would be near the upper end of the scale for safe evacuation of individuals in flooded areas. But the authors do not believe the evacuation of individuals in Gardens Point Road would have been safe because of the intense water surges and flow turbulence. More generally any criterion for safe evacuation solely based upon the flow velocity, water depth or specific momentum cannot account for the hazards caused by the flow turbulence, water depth fluctuations and water surges.
Resumo:
IN the last two decades, the instantaneous structure of a turbulent boundary layer has been examined by many in an effort to understand the dynamics of the flow. Distinct and well-defined flow patterns that seem to have great relevance to the turbulence production mechanism have been observed in the wall region.1'2 The flow near the wall is intermittent with periodic eruptions of the fluid, a phenomenon generally termed "bursting process." Earlier investigations in this field were limited to liquid flows at low speeds and the entire flowpattern was observed using flow visualization techniques.Study was later extended to boundary-layer flows in windtunnels at higher speeds and Reynolds numbers using hot-wiresignals for the analysis of the bursting phenomenon.
Resumo:
Experimental results are presented on the lateral growth of turbulent spots in a series of flows with favorable pressure gradients. It is shown that the wedge angle increases slowly with the Reynolds number and that a favorable pressure gradient inhibits the growth of turbulent spots and, in general, results in a nonlinear turbulent wedge. As soon as the pressure gradient decreases to the point where the flow becomes supercritical, however, spot growth increases rapidly and the associated turbulent wedge becomes linear.