930 resultados para 200-1224B
Resumo:
In Switzerland, more and more patients go directly to the emergency department, bypassing general practitioners. However, a mixture of non-urgent walk-in patients and acute emergencies in the same emergency department can inevitably make it more difficult to provide genuine emergencies with rapid treatment, leading to deterioration in the quality of emergency services, and tending to increase on-floor mortality and morbidity, together with higher overall costs.
Resumo:
In excisional body-contouring surgery the surgeon is often confronted with time-consuming closure of long wounds. Recently, a new combination of a self-adhering mesh together with a liquid 2-octyl cyanoacrylate adhesive (Prineo™; Ethicon, Inc., Somerville, NJ, USA) has been introduced to replace intracutaneous running suture.
Seismic evidence of up to 200 m lake-level change in Southern Patagonia since Marine Isotope Stage 4
Resumo:
The novel tabletop miniaturized radiocarbon dating system (MICADAS) at ETH Zurich features a hybrid Cs sputter negative ion source for the measurement of solid graphite and gaseous CO2 samples. The source produces stable currents of up to 6 mu A C- out of gaseous samples with an efficiency of 3-6%. A gas feeding system has been set up that enables constant dosing of CO2 into the Cs sputter ion source and ensures stable measuring conditions. The system is based on a syringe in which CO2 gas is mixed with He and then pressed continuously into the ion source at a constant flow rate. Minimized volumes allow feeding samples of 3-30 mu g carbon quantitatively into the ion source. In order to test the performance of the system, several standards and blanks have successfully been measured. The ratios of C-14/C-12 could be repeated within statistical errors to better than 1.0% and the C-13/C-12 ratios to better than 0.2%. The blank was < 1 pMC.
Resumo:
We analyze the impact of stratospheric volcanic aerosols on the diurnal temperature range (DTR) over Europe using long-term subdaily station records. We compare the results with a 28-member ensemble of European Centre/Hamburg version 5.4 (ECHAM5.4) general circulation model simulations. Eight stratospheric volcanic eruptions during the instrumental period are investigated. Seasonal all- and clear-sky DTR anomalies are compared with contemporary (approximately 20 year) reference periods. Clear sky is used to eliminate cloud effects and better estimate the signal from the direct radiative forcing of the volcanic aerosols. We do not find a consistent effect of stratospheric aerosols on all-sky DTR. For clear skies, we find average DTR anomalies of −0.08°C (−0.13°C) in the observations (in the model), with the largest effect in the second winter after the eruption. Although the clear-sky DTR anomalies from different stations, volcanic eruptions, and seasons show heterogeneous signals in terms of order of magnitude and sign, the significantly negative DTR anomalies (e.g., after the Tambora eruption) are qualitatively consistent with other studies. Referencing with clear-sky DTR anomalies to the radiative forcing from stratospheric volcanic eruptions, we find the resulting sensitivity to be of the same order of magnitude as previously published estimates for tropospheric aerosols during the so-called “global dimming” period (i.e., 1950s to 1980s). Analyzing cloud cover changes after volcanic eruptions reveals an increase in clear-sky days in both data sets. Quantifying the impact of stratospheric volcanic eruptions on clear-sky DTR over Europe provides valuable information for the study of the radiative effect of stratospheric aerosols and for geo-engineering purposes.