999 resultados para 2 cruises
Resumo:
The detection of multi-decadal trends in the oceanic oxygen content and its possible attribution to global warming is protracted by the presence of a substantial amount of interannual to decadal variability, which hitherto is poorly known and characterized. Here we address this gap by studying interannual to decadal changes of the oxygen concentration in the Subpolar Mode Water (SPMW), the Intermediate Water (IW) and the Mediterranean Outflow Water (MOW) in the eastern North Atlantic. We use data from a hydrographic section located in the eastern North Atlantic at about 48°N repeated 12 times over a period of 19 years from 1993 through 2011, with a nearly annual resolution up to 2005. Despite a substantial amount of year-to-year variability, we observe a long-term decrease in the oxygen concentration of all three water masses, with the largest changes occurring from 1993 to 2002. During that time period, the trends were mainly caused by a contraction of the subpolar gyre associated with a northwestward shift of the Subpolar Front (SPF) in the eastern North Atlantic. This caused SPMW to be ventilated at lighter densities and its original density range being invaded by subtropical waters with substantially lower oxygen concentrations. The contraction of the subpolar gyre reduced also the penetration of IW of subpolar origin into the region in favor of an increased northward transport of IW of subtropical origin, which is also lower in oxygen. The long-term oxygen changes in the MOW were mainly affected by the interplay between circulation and solubility changes. Besides the long-term signals, mesoscale variability leaves a substantial imprint as well, affecting the water column over at least the upper 1000 m and laterally by more than 400 km. Mesoscale eddies induced changes in the oxygen concentration of a magnitude that can substantially alias analyses of long-term changes based on repeat hydrographic data that are being collected at intervals of typically 10 years.
Resumo:
We use digital seismic reflection profiles within a 1° * 1° survey area on the Cocos Ridge (COCOS6N) to study the extent and timing of sedimentation and sediment redistribution on the Cocos Ridge. The survey was performed to understand how sediment focusing might affect paleoceanographic flux measurements in a region known for significant downslope transport. COCOS6N contains ODP Site 1241 to ground truth the seismic stratigraphy, and there is a seamount ridge along the base of the ridge that forms a basin (North Flank Basin) to trap sediments transported downslope. Using the Site 1241 seismic stratigraphy and densities extrapolated from wireline logging, we document mass accumulation rates (MARs) since 11.2 Ma. The average sediment thickness at COCOS6N is 196 m, ranging from outcropping basalt at the ridge crest to ~ 400 m at North Flank Basin depocenters. Despite significant sediment transport, the average sedimentation over the entire area is well correlated to sediment fluxes at Site 1241. A low mass accumulation rate (MAR) interval is associated with the 'Miocene carbonate crash' interval even though COCOS6N was at the equator at that time and relatively shallow. Highest MAR occurs within the late Miocene-early Pliocene biogenic bloom interval. Lowest average MAR is in the Pleistocene, as plate tectonic motions caused COCOS6N to leave the equatorial productivity zone. The Pliocene and Pleistocene also exhibit higher loss of sediment from the ridge crest and transport to North Flank Basin. Higher tidal energy on the ridge caused by tectonic movement toward the margin increased sediment focusing in the younger section.
Resumo:
This paper reports the concentrations and within-class distributions of long-chain alkenones and alkyl alkenoates in the surface waters (0-50 m) of the eastern North Atlantic, and correlates their abundance and distribution with those of source organisms and with water temperature and other environmental variables. We collected these samples of >0.8 µm particulate material from the euphotic zone along the JGOFS 20°W longitude transect, from 61°N to 24°N, during seven cruises of the UK-JGOFS Biogeochemical Ocean Flux Study (BOFS) in 1989-1991; the biogeographical range of our 53 samples extends from the cold (<10°C), nutrient-rich and highly productive subarctic waters of the Iceland Basin to the warm (>25°C) oligotrophic subtropical waters off Africa. Surface water concentrations of total alkenone and alkenoates ranged from <50 ng/l in oligotrophic waters below 40°N to 2000-4500 ng/l in high latitude E. huxleyi blooms, and were well correlated with E. huxleyi cell densities, supporting the assumption that E. huxleyi is the predominant source of these compounds in the present day North Atlantic. The within-class distribution of the C37 and C38 alkenones and C36 alkenoates varied strongly as a function of temperature, and was largely unaffected by nutrient concentration, bloom status and other surface water properties. The biosynthetic response of the source organisms to growth temperature differed between the cold (<16°C) waters above 47°N and the warmer waters to the south. In cold (<16°C) waters above 47°N, the relative amounts of alkenoates and C38 alkenones synthesized was a strong function of growth temperature, while the unsaturation ratio of the alkenones (C37 and C38) was uncorrelated with temperature. Conversely, in warm (>16°C) waters below 47°N, the relative proportions of alkenoates and alkenones synthesized remained constant with increasing temperature while the unsaturation ratios of the C37 and C38 methyl alkenones (Uk37 and Uk38Me, respectively) increased linearly. The fitted regressions of Uk37 and Uk38Me versus temperature for waters >16°C were both highly significant (r**2 > 0.96) and had identical slopes (0.057) that were 50% higher than the slope (0.034) of the temperature calibration of Uk37 reported by Prahl and Wakeham (1987; doi:10.1038/330367a0) over the same temperature range. These observations suggest either a physiological adjustment in biochemical response to growth temperature above a 16-17°C threshold and/or variation between different E. huxleyi strains and/or related species inhabiting the cold and warm water regions of the eastern North Atlantic. Using our North Atlantic data set, we have produced multivariate temperature calibrations incorporating all major features of the alkenone and alkenoate data set. Predicted temperatures using multivariate calibrations are largely unbiased, with a standard error of approximately ±1°C over the entire data range. In contrast, simpler calibration models cannot adequately incorporate regional diversity and nonlinear trends with temperature. Our results indicate that calibrations based upon single variables, such as Uk37, can be strongly biased by unknown systematic errors arising from natural variability in the biosynthetic response of the source organisms to growth temperature. Multivariate temperature calibration can be expected to give more precise estimates of Integrated Production Temperatures (IPT) in the sedimentary record over a wider range of paleoenvironmental conditions, when derived using a calibration data set incorporating a similar range of natural variability in biosynthetic response.