992 resultados para 181-1124D
Resumo:
Approximately one thousand sediment samples from ODP Site 1123 on the Chatham Rise, east of New Zealand, have been examined for inorganic elemental concentrations. ODP 1123 provides a record of sediment drift deposition under the Deep Western Boundary Current, the main inflow of deep water to the Pacific Ocean since the Early Oligocene, though a major hiatus spans the late Early Oligocene to the Early Miocene. Normalisation of the elemental concentrations by aluminium was used to allow for the effects of variable carbonate dilution. The elemental ratios were used as proxies for sediment composition and as palaeoceanographic indices. The samples were collected at a resolution designed to sample adequately any variation in elemental ratios at the scale of the Milankovitch orbital cycles. The sampled intervals span the Early Oligocene, Early Miocene, mid-Miocene and Late Pleistocene to Recent. Anomalous Si/Al, K/Al, Ti/Al values in the upper Pleistocene section, often associated with horizons of low carbonate, are attributed to tephras derived from North Island. Not all of the tephras detected geochemically had been detected visually in the cores. A total of 37 tephra events between 1.17 Ma BP and the present are recognised based on this and the shipboard investigations. The tephra events cluster at intervals of approximately 326 000 years (326 ka) perhaps due to variations in eruption frequency on North Island and/or to variations in the regional palaeowind intensity and direction. In the Late Pleistocene to Recent P/Al (inferred nutrient availability), percent calcium carbonate (%CaCO3) and Ba/Al (inferred productivity) varied regularly at a period of 40 000 years with these factors lagging minimum global ice volumes (interglacials). During the mid-Miocene CaCO3, Ba/Al, P/Al and Si/Al all gradually increased with %CaCO3 and P/Al showing regular 138 000-yr cyclicity and Ba/Al showing 44-ka cyclicity. Inferred productivity (Ba/Al) may have been rising in association with increasing nutrient availability (P/Al) at the same time as increased vigour of the Deep Western Boundary Current that was connected to a period of rapid ice-sheet growth in Antarctica. In the Early Miocene P/Al and Si/Al were much higher than subsequently and both %CaCO3 and P/Al exhibited 131 000-yr cycles. By far the highest nutrient levels and inferred productivity at this site apparently occurred during the Early Oligocene as revealed by long-term changes in P/Al and Si/Al. A progressive rise in K/Al, but stable Ti/Al from the Early Oligocene to the Recent probably indicates increased proportions of illite in the clay mineral fraction of the drift sediments caused by increased flux of debris from the Southern Alps.
Resumo:
Canonical correspondence analysis indicates that the distribution of Neogene benthic foraminiferal faunas (>63 µm) in seven DSDP and ODP sites (500-4500 m water depth) east of New Zealand (38-51°S, 170°E-170°W) is most strongly influenced by depth (water mass stratification), and secondly by age (palaeoceanographic changes influencing faunal composition and biotic evolution). Stratigraphic faunal changes are interpretted in terms of the pulsed sequential development of southern, and later northern, polar glaciation and consequent cooling of bottom waters, increased vertical and lateral stratification of ocean water masses, and increased overall and seasonal surface water productivity. Oligocene initiation of the Antarctic Circumpolar Current and Deep Western Boundary Current (DWBC), flowing northwards past New Zealand, resulted in extensive hiatuses throughout the Southwest Pacific, some extending through into the Miocene. Planktic foraminiferal fragmentation index values indicate that carbonate dissolution was significant at abyssal depths throughout most of the Neogene, peaking at upper abyssal depths in the late Miocene (11-7 Ma), with the lysocline progressively deepened thereafter. Miocene abyssal faunas are dominated by Globocassidulina subglobosa and Oridorsalis umbonatus, with increasing Epistominella exigua after 16 Ma at upper abyssal depths. Peak abundances of Epistominella umbonifera indicate increased input of cold Southern Component Water to the DWBC at 7-6 Ma. Faunal association changes imply establishment of the modern Oxygen Minimum Zone (upper Circumpolar Deep Water) in the latest Miocene. Significant latitudinal differences between the benthic foraminiferal faunas at lower bathyal depths indicate the existence of an oceanic front along the Chatham Rise (location of present Subtropical Front), since the early late Miocene at least, with more pulsed productivity (higher E. exigua) along the south side. Modern Antarctic Intermediate Water faunal associations were established north of the Chatham Rise at 10-9 Ma, and south of it at 3-1.5 Ma. Middle-upper bathyal faunas on the Campbell Plateau are dominated by reticulate bolivinids during the early and middle Miocene, indicative of sustained productivity above relatively sluggish, suboxic bottom waters. Faunal changes and hiatuses indicate increased current vigour over the Campbell Plateau from the latest Miocene on. Surface water productivity (food supply) appears to have increased in three steps (at times of enhanced global cooling) marked by substantially increased relative abundance of: (1) Abditodentrix pseudothalmanni, Alabaminella weddellensis, Cassidulina norvangi (16-15 Ma, increased pulsed productivity); (2) Bulimina marginata f. aculeata, Nonionella auris, Trifarina angulosa, Uvigerina peregrina (3-1.5 Ma, increased overall productivity); and (3) Cassidulina carinata (1-0.5 Ma, increased overall productivity). Three intervals of deep-sea benthic foraminiferal taxonomic turnover are recognised (16-15, 11.5-10, 2-0.5 Ma) corresponding to intervals of enhanced global cooling and possible productivity changes. The late Pliocene-middle Pleistocene extinction, associated with increasing Northern Hemisphere glaciation, culminating in the middle Pleistocene climatic transition, was more significant in the study area than the earlier Neogene turnovers.