993 resultados para 162-982B


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At ODP Site 983, relative geomagnetic paleointensity and planktic and benthic delta18O records have been acquired for the last 350 kyr. The mean sedimentation rate in this interval is 11.3 cm/kyr. Magnetic properties and hysteresis ratios indicate that pseudo-single domain magnetite is the remanence carrier. Volume susceptibility (kappa), anhysteretic (ARM) and isothermal (IRM) remanence values vary by a factor of 3-4, well within the criteria usually cited for paleointensity studies. Natural remanent magnetization (NRM) is normalized by ARM and IRM to acquire the paleointensity proxy. Arithmetic means of NRM/ARM and NRM/IRM, calculated for five demagnetization steps in the 25-45 mT range, constitute the relative paleointensity estimates. Some paleointensity lows (particularly those at ~40, ~120 and ~188 ka) are associated with directional excursions of the field, especially the event at ~188 ka (referred to here as the Iceland Basin Event) that constitutes a short-lived polarity reversal. For the last 200 kyr, the records can be correlated with other high-resolution paleointensity records such as those from the Labrador Sea, Mediterranean/Somali Basin and Sulu Sea, implying that the millennial scale features are globally synchronous. A labeling system for paleointensity features is proposed that ties prominent highs and lows to oxygen isotope stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed faunal, isotopic, and lithic marine records provide new insight into the stability and climate progression of the last interglacial period, Marine Isotope Stage (MIS) 5, which peaked approximately 125,000 years ago. In the eastern subpolar North Atlantic, at the latitude of Ireland, interglacial warmth of the ice volume minimum of substage 5e (MIS 5e) lasted ~10,000 years (10 ka) and its demise occurred in two cooling steps. The first cooling step marked the end of the climatic optimum, which was 2-3 ka long. Minor ice rafting accompanied each cooling step; the second, larger, step encompassing cold events C26 and C25 was previously identified in the northwestern Atlantic. Approximately 4 °C of cooling occurred between peak interglacial warmth and C25, and the region experienced an additional temporary cooling of at least 1-2 °C during C24, a cooling event associated with widespread ice rafting in the North Atlantic. Beginning with C24, MIS 5 was characterized by oscillations of at least 1-2 °C superimposed on a generally cool baseline. The results of this study imply that the marine climatic optimum of the last interglacial was shorter than previously thought. The finding that the eastern subpolar North Atlantic cooled significantly before C24 reconciles terrestrial evidence for progressive climate deterioration at similar and lower latitudes with marine conditions. Our results also demonstrate a close association between modest ice rafting, cooling, and deep ocean circulation even during the peak of MIS 5e and in the earliest stages of ice growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 199 in the equatorial Pacific, visible and near-infrared spectroscopy (VNIS) was used to measure the reflectance spectra (350-2500 nm) of 1343 sediment samples. Reflectance spectra were also measured for a suite of 60 samples of known mineralogy, thereby providing a local ground-truth calibration of spectral features to percentages of calcite, opal, smectite, and illite. The associated algorithm was used to calculate mineral percentages from the 1343 spectra. Using multiple regression and VNIS mineralogy, multisensor track physical properties and light spectroscopy data were then converted into continuous high-resolution mineralogy logs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of surface water to deep water in the North Atlantic results in the release of heat from the ocean to the atmosphere, which may have amplified millennial-scale climate variability during glacial times (Broecker et al., 1990, doi:10.1029/PA005i004p00469) and could even have contributed to the past 11,700 years of relatively mild climate (known as the Holocene epoch) (Bond et al., 2001, doi:10.1126/science.1065680; Alley et al., 1997, doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2; Keigwin and Boyle, 2000, doi:10.1073/pnas.97.4.1343). Here we investigate changes in the carbon-isotope composition of benthic foraminifera throughout the Holocene and find that deep-water production varied on a centennial-millennial timescale. These variations may be linked to surface and atmospheric events that hint at a contribution to climate change over this period.