996 resultados para 138-847B
Resumo:
The provenance of eolian dust supplied to deep-sea sediments has the potential to offer insights into changes in past atmospheric circulation. Specifically, measuring temporal changes in dust provenance can shed light on changes in the mean position of the Intertropical Convergence Zone (ITCZ), a region acting as a barrier separating wind-blown material derived from northern versus southern hemisphere sources. Here we have analyzed Nd, Sr, and Pb isotope ratios in the operationally-defined detrital component extracted from deep-sea sediments in the eastern equatorial Pacific (EEP) along a meridional transect at 110°W from 3°S to 7°N (ODP Leg 138, sites 848-853). Sr isotope results show that barite Sr has a significant influence on 87Sr/86Sr isotope ratios of samples in the upwelling zone of the EEP. However, sites located >3° or more away from the equator (sites 852 and 853) are believed to not be affected by barite Sr and provide useful detrital Sr signals. 208Pb/206Pb and 207Pb/206Pb ratios in all cores fall into the Pb-isotope space of five potential dust sources (Asia, North and Central/South America, Sahara, and Australia), with no distinct isotopic fingerprinting of the dominant source(s). epsilon-Nd values were most valuable for discerning detrital source provenance, and their values at all sites, ranging from ~5.46 to ~3.25, were more unradiogenic for sediments deposited during the last glacial than for those deposited during the Holocene. There are distinct latitudinal trends in the epsilon-Nd values, with more radiogenic values further south and less radiogenic values further north, excluding site 848. This distinction holds true for both Holocene and last glacial periods. For the most southerly site, 848, we invoke, for the first time, a distinct southern hemisphere Australian source as being responsible for the unradiogenic Nd isotope ratios. Both average last glacial and Holocene epsilon-Nd values show similar sharp gradients along the transect between 5.29°N and 2.77°N, suggesting little movement of the glacial ITCZ in the EEP. However, during the deglacial, this gradient is stronger and shifted further north between 5.29°N and 7.21°N, suggesting a more northerly, possibly stronger, deglacial ITCZ.
Resumo:
A stable-isotope stratigraphy at Site 846 (tropical Pacific, 3°06'S, 90°49'W, 3307 m water depth), based on the benthic foraminifers Cibicides wuellerstorfi and Uvigerina peregrina, yields a high-resolution record of deep-sea delta18O and delta13C over the past 1.8 Ma, with an average sampling interval of 3 k.y. Variance in the delta18O and delta13C records is concentrated in the well-known orbital periods of 100, 41, and 23 k.y. In the 100-k.y. band, both isotopic signals grow from relatively low amplitudes prior to 1.2 Ma, to high amplitudes in the late Quaternary since 0.7 Ma. The amplitude of delta18O and especially of delta13C decreases in the 41-k.y. band as it grows in the 100-k.y. band, consistent with a transfer of energy into an orbitally-paced internal oscillation. A weak 30-k.y. rhythm, present in both delta18O and delta13C, may reflect nonlinear interaction between the 41-k.y. and 100-k.y. bands in the evolving climate system. In the 23-k.y. and 19-k.y. bands associated with orbital precession, delta18O and delta13C are not coherent with each other on long time scales, and do not evolve like the 100-k.y. and 41-k.y. bands. This suggests that the source of the growing 100-k.y. oscillation is not a nonlinear response to precession, in contrast to predictions of some climate models. Sedimentation rates at this site also vary with a strong 100-k.y. cycle. Unlike the isotope records, the amplitude of 100-k.y. variations in sedimentation rate is relatively constant over the past 1.8 Ma, ranging from about 15 to 70 m/m.y. Prior to 0.9 Ma, sedimentation rates co-vary with orbital eccentricity, rather than with global climate as reflected by delta18O or delta13C. A source of this 100-k.y. cycle of sedimentation rate in the absence of similar ice volume fluctuations may be precessional heating of equatorial land masses, which in an energy balance climate model drives variations of monsoonal climates with a 100-k.y. rhythm. For the interval younger than 0.9 Ma, high sedimentation rates in the 100-k.y. band are consistently associated with glacial stages. This change of pattern suggests that when the amplitude of glacial cycles become large enough, their global effects overpower a local monsoon-driven variation in sedimentation rate at Site 846.
Resumo:
Changes in circulation associated with the shoaling of the Isthmus of Panama and the Caribbean carbonate crash in the Miocene were investigated using Nd isotopes from fossil fish teeth and debris from two sites in the Caribbean Basin (Ocean Drilling Program Sites 998 and 999) and two sites in the eastern equatorial Pacific (Sites 846 and 1241). The total range for e-Nd values measured from 18 to 4.5 Ma in the Caribbean is -7.3 to 0. These values are higher than Atlantic water masses (~-11) and range up to values equivalent to contemporaneous Pacific water masses, confirming that flow into the Caribbean Basin was composed of a mixture of Pacific and Atlantic waters, with an upper limit of almost pure Pacific-sourced waters. Throughout the Caribbean record, particularly during the carbonate crash (10-12 Ma), low carbonate mass accumulation rates (MARs) correlate with more radiogenic e-Nd values, indicating increased flow of corrosive Pacific intermediate water into the Caribbean Basin during intervals of dissolution. This flow pattern agrees with results from general ocean circulation models designed to study the effect of the shoaling of the Central American Seaway. Low carbonate MARs and high e-Nd values also correlate with intervals of increased Northern Component Water production and, therefore, enhanced conveyor circulation, suggesting that the conveyor may respond to changes in circulation associated with shoaling of the Central American Seaway. Reduced Pacific throughflow related to shoaling of the seaway led to a gradual increase in carbonate preservation and more Atlantic-like e-Nd values following the carbonate crash.