962 resultados para 129-801
Resumo:
On the basis of their respective eruptive environments and chemical characteristics, alkalic dolerite sills from the northern Pigafetta Basin (Site 800) and tholeiitic pillow lavas from the Mariana Basin (Site 802) sampled during Ocean Drilling Program Leg 129 are considered to represent examples of the widespread mid-Cretaceous volcanic event in the western Pacific. Both groups of basic rocks feature mild, low-grade, anoxic smectite-celadonite-carbonate-pyrite alteration; late-stage oxidation is very limited in extent, with the exception of the uppermost sill unit at Site 800. The aphyric and nonvesicular Site 800 alkalic dolerite sills are all well-evolved mineralogically and chemically, being mainly of hawaiite composition, and are similar to ocean island basalts. They are characterized by high contents of incompatible elements (for example, 300-400 ppm Zr), well-fractionated rare earth element patterns ([La/Yb]N 18-21) and HIMU isotopic characters. They probably represent deep-sea, lateral, intrusive off-shoots from nearby seamounts of similar age. The olivine-plagioclase +/- clinopyroxene phyric tholeiitic pillow lavas and thin flows of Site 802 are nonvesicular and quench-textured throughout. Relative to normal-type mid-ocean ridge basalt, they are enriched in large-ion-lithophile elements, exhibit flat (unfractionated) rare earth element patterns and have distinctive (lower) Zr/Nb, Zr/Ta, La/Ta, and Hf/Th ratios. Overall they are compositionally and isotopically similar to the mid-Cretaceous tholeiites of the Nauru basin and the Ontong-Java and Manihiki plateaus. The Site 802 tholeiites differ from the thickened crustal segments of the oceanic plateaus, however, in apparently representing only a thin veneer over the local basement in an off-axis environment.
Resumo:
Four models of fission track annealing in apatite are compared with measured fission track lengths in samples from Site 800 in the East Mariana Basin, Ocean Drilling Program Leg 129, given an independently determined temperature history. The temperature history of Site 800 was calculated using a one-dimensional, compactive, conductive heat flow model assuming two end-member thermal cases: one for cooling of Jurassic ocean crust that has experienced no subsequent heating, and one for cooling of Cretaceous ocean crust. Because the samples analyzed were only shallowly buried and because the tectonic history of the area since sample deposition is simple, resolution of the temperature history is high. The maximum temperature experienced by the sampled bed is between 16°-21°C and occurs at 96 Ma; temperatures since the Cretaceous have dropped in spite of continued pelagic sediment deposition because heat flow has continued to decay exponentially and bottom-water temperatures have dropped. Fission tracks observed within apatite grains from the sampled bed are 14.6 +/- 0.1 µm (1 sigma) long. Given the proposed temperature history of the samples, one unpublished and three published models of fission track annealing predict mean track lengths from 14.8 to 15.9 µm. These models require temperatures as much as 40°C higher than the calculated paleotemperature maximum of the sampled bed to produce the same degree of track annealing. Measured and predicted values are different because annealing models are based on extrapolation of high temperature laboratory data to geologic times. The model that makes the closest prediction is based on the greatest number of experiments performed at low temperature and on an apatite having composition closest to that of the core samples.
Resumo:
Drilling at Ocean Drilling Program Site 802 in the central Mariana Basin, northwest Pacific Ocean, revealed an unexpected 222-m-thick sequence of well-cemented tuff of Miocene age. The deposits are unusual in that their source is presumably an unmapped seamount and they exhibit several peculiar petrological and mineralogical features. The well-developed secondary mineral sequence which includes analcime is rare in such relatively young, unburied deposits, in an area where there is little other evidence of hydrothermal activity. The massive tuff section also contains abundant fissure veins made of a rare silicate carbonate sulfate hydroxide hydrate of calcium, called thaumasite, which has not before been described in deep submarine deposits. The smectite-zeolite-thaumasite paragenesis coincides with the presence of chloride and calcium-enriched interstitial waters. The diagenetic evolution of the deposit appears to have been largely controlled by the depositional mode. The discharges of disaggregated and rejuvenated volcaniclasts seem to have been abrupt and repeated. The Miocene tuff at Site 802 thus provides new insights on the interactions between basaltic glass, biogenic phases, and seawater, in a specific deep-sea environment.
Resumo:
Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.