997 resultados para 119-737A
Resumo:
The North Atlantic at present is ventilated by overflow of the Denmark Strait, Iceland-Faeroe Ridge, Faeroe Bank Channel, and Wyville-Thompson Ridge. The evolution of Cenozoic abyssal circulation of this region was related to tectonic opening and subsidence of these sills. We used d13C records of the benthic foraminifer Cibicidoides to decipher the timing of tectonically controlled changes in bottom-water circulation in the eastern basins (Biscay and Iberian) of the northern North Atlantic. Records from Site 608 (Kings Trough, northeastern North Atlantic) show that from about 24 to 15 Ma (early to early middle Miocene), d13C values in the Kings Trough area were depleted relative to western North Atlantic values and were more similar to Pacific d13C values. This reflects less ventilation of the Kings Trough region as compared to the well-oxygenated western North Atlantic. Comparison of Oligocene d13C records from Site 119 (Bay of Biscay) with western North Atlantic records suggests that the eastern basin was also relatively isolated prior to 24 Ma. At about 15 Ma, d13C values at Site 608 attained values similar to the western North Atlantic, indicating increased eastern basin ventilation in the middle Miocene. This increased advection into the eastern basin predated a major d18O increase which occurred at about 14.6 Ma. Subsidence estimates of the Greenland-Scotland Ridge indicate that the deepening of the Iceland-Faeroe Ridge was coincident with the marked change in eastern basin deep-water ventilation.
Resumo:
During ODP Leg 119 one basement hole was drilled at Site 738, on the Southern Kerguelen Plateau. The 38.2 m of basement rocks drilled comprises three basaltic aa-lava flows with basal and top breccias, overlain by Turanian marine carbonates. Site 738 basalts probably erupted near a fracture zone, and were emplaced during the plateau-forming stage of Kerguelen Plateau evolution under quiet, subaerial to shallow water conditions. The basalts are T-MORB, chemically resembling Mesozoic continental flood basalts of the southern hemisphere. Two slightly different magma batches are distinguished by Fe, Ti, Al, Zr, and REE concentrations. Prior to eruption, the magmas had undergone significant olivine and some clinopyroxene fractionation. Incompatible and immobile trace element concentrations and ratios point to a veined upper mantle source, where a refractory mineral assemblage retains Nb, Ta, and the HREE. The basaltic melts derived from this regionally veined, enriched upper mantle have high LREE, and especially Ba and Th concentrations and bear the DUPAL isotopic signature gained from deep- seated, recycled, old oceanic(?) crust. A saponite-celadonite secondary mineral assemblage confines the alteration temperature to <170°C. Alteration is accompanied by net gains of H2O, CO2, K2O, and Rb, higher oxidation, minor Na2O, SiO2 gains, and losses of V and CaO. Released Ca, together with Ca from seawater, precipitated as calcite in veins and vesicles, plumbed the circulation system and terminated the rock/open seawater interaction.