864 resultados para 040105 Climatology (excl. Climate Change Processes)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution range of Lactuca serriola, a species native to the summer-dry mediterranean climate, has expanded northwards during the last 250 years. This paper assesses the influence of climate on the range expansion of this species and highlights the importance of anthropogenic disturbance to its spread. Location Central and Northern Europe. Methods Data on the geographic distribution of L. serriola were assembled through a literature search as well as through floristic and herbarium surveys. Maps of the spread of L. serriola in Central and Northern Europe were prepared based on herbarium data. The spread was assessed more precisely in Germany, Austria and Great Britain by pooling herbarium and literature data. We modelled the bioclimatic niche of the species using occurrence and climatic data covering the last century to generate projections of suitable habitats under the climatic conditions of five time periods. We tested whether the observed distribution of L. serriola could be explained for each time period, assuming that the climatic niche of the species was conserved across time. Results The species has spread northwards since the beginning of the 19th century. We show that climate warming in Europe increased the number of sites suitable for the species at northern latitudes. Until the late 1970s, the distribution of the species corresponded to the climatically suitable sites available. For the last two decades, however, we could not show any significant relationship between the increase in suitable sites and the distributional range change of L. serriola. However, we highlight potential areas the species could spread to in the future (Great Britain, southern Scandinavia and the Swedish coast). It is predominantly non-climatic influences of global change that have contributed to its rapid spread. Main conclusions The observation that colonizing species are not filling their climatically suitable range might imply that, potentially, other ruderal species could expand far beyond their current range. Our work highlights the importance of historical floristic and herbarium data for understanding the expansion of a species. Such historical distributional data can provide valuable information for those planning the management of contemporary environmental problems, such as species responses to environmental change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questions: Did the forest area in the Swiss Alps increase between 1985 and 1997? Does the forest expansion near the tree line represent an invasion into abandoned grasslands (ingrowth) or a true upward shift of the local tree line? What land cover / land use classes did primarily regenerate to forest, and what forest structural types did primarily regenerate? And, what are possible drivers of forest regeneration in the tree line ecotone, climate and/or land use change? Location: Swiss Alps. Methods: Forest expansion was quantified using data from the repeated Swiss land use statistics GEOSTAT. A moving window algorithm was developed to distinguish between forest ingrowth and upward shift. To test a possible climate change influence, the resulting upward shifts were compared to a potential regional tree line. Results: A significant increase of forest cover was found between 1650 to and 2450 m. Above 1650 m, 10% of the new forest areas were identified as true upward shifts whereas 90% represented ingrowth, and we identified both land use and climate change as likely drivers. Most upward shift activities were found to occur within a band of 300 m below the potential regional tree line, indicating land use as the most likely driver. Only 4% of the upward shifts were identified to rise above the potential regional tree line, thus indicating climate change. Conclusions: Land abandonment was the most dominant driver for the establishment of new forest areas, even at the tree line ecotone. However, a small fraction of upwards shift can be attributed to the recent climate warming, a fraction that is likely to increase further if climate continues to warm, and with a longer time-span between warming and measurement of forest cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of a global ecological crisis, it is an important move when trade unions turn to environmentalism. Yet, the form that this environmentalism takes is often overlooked. This is especially the case with international trade unions. Based on an empirical study of international trade unions' engagement with the climate change issue, this article argues that international trade unions follow three different (and partially conflicting) strategies. I label these strategies as 'deliberative', 'collaborative growth' and 'socialist', and I examine each in turn. I argue that such analysis is important if we want to identify the potential for transforming the social relations of production that are at the root of the current climate crisis, and for identifying an alternative socio-ecological strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalization of reaction-diffusion models to multigeneration biological species is presented. It is based on more complex random walks than those in previous approaches. The new model is developed analytically up to infinite order. Our predictions for the speed agree to experimental data for several butterfly species better than existing models. The predicted dependence for the speed on the number of generations per year allows us to explain the change in speed observed for a specific invasion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Early Triassic sedimentary-facies evolution and carbonate carbon-isotope marine record (delta(13)C(carb)) of ammonoid-rich, outer platform settings show striking similarities between the South ChinaBlock (SCB) and the widely distant Northern Indian Margin (NIM). The studied sections are located within the Triassic Tethys Himalayan belt (Losar section, Himachal Pradesh, India) and the Nanpanjiang Basin in the South China Block (Jinya section, Guangxi Province), respectively. Carbon isotopes from the studied sections confirm the previously observed carbon cycle perturbations at a time of major paleoceanographic changes in the wake of the end-Permian biotic crisis. This study documents the coincidence between a sharp increase in the carbon isotope composition and the worldwide ammonoid evolutionary turnover (extinction followed by a radiation) occurring around the Smithian-Spathian boundary. Based on recent modeling studies on ammonoid paleobiogeography and taxonomic diversity, we demonstrate that the late Early Triassic (Smithian and Spathian) was a time of a major climate change. More precisely, the end Smithian climate can be characterized by a warm and equable climate underlined by a flat, pole-to-equator, sea surface temperature (SST) gradient, while the steep Spathian SST gradient suggests latitudinally differentiated climatic conditions. Moreover, sedimentary evidence suggests a transition from a humid and hot climate during the Smithian to a dryer climate from the Spathian onwards. By analogy with comparable carbon isotope perturbations in the Late Devonian, Jurassic and Cretaceous we propose that high atmospheric CO(2) levels could have been responsible for the observed carbon cycle disturbance at the Smithian-Spathian boundary. We suggest that the end Smithian ammonoid extinction has been essentially caused by a warm and equable climate related to an increased CO(2) flux possibly originating from a short eruptive event of the Siberian igneous province. This increase in atmospheric CO(2) concentrations could have additionally reduced the marine calcium carbonate oversaturation and weakened the calcification potential of marine organisms, including ammonoids, in late Smithian oceans. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Insect pests, biological invasions and climate change are considered to representmajor threats to biodiversity, ecosystem functioning, agriculture and forestry.Deriving hypothesis of contemporary and/or future potential distributions of insectpests and invasive species is becoming an important tool for predicting the spatialstructure of potential threats.2 The western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is apest of maize in North America that has invaded Europe in recent years, resultingin economic costs in terms of maize yields in both continents. The present studyaimed to estimate the dynamics of potential areas of invasion by the WCR under aclimate change scenario in the Northern Hemisphere. The areas at risk under thisscenario were assessed by comparing, using complementary approaches, the spatialprojections of current and future areas of climatic favourability of the WCR. Spatialhypothesis were generated with respect to the presence records in the native rangeof the WCR and physiological thresholds from previous empirical studies.3 We used a previously developed protocol specifically designed to estimatethe climatic favourability of the WCR. We selected the most biologicallyrelevant climatic predictors and then used multidimensional envelope (MDE) andMahalanobis distances (MD) approaches to derive potential distributions for currentand future climatic conditions.4 The results obtained showed a northward advancement of the upper physiologicallimit as a result of climate change, which might increase the strength of outbreaksat higher latitudes. In addition, both MDE and MD outputs predict the stability ofclimatic favourability for the WCR in the core of the already invaded area in Europe,which suggests that this zone would continue to experience damage from this pestin Europe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The archipelago of Cape Verde is made up of ten islands and nine islets and is located between latitudes 14º 28' N and 17º 12' N and longitudes 22º 40' W and 25º 22' W. It is located approximately 500 km from the Senegal coast in West Africa (Figure 1). The islands are divided into two groups: Windward and Leeward. The Windward group is composed of the islands of Santo Antão, São Vicente, Santa Luzia, São Nicolau, Sal and Boavista; and the Leeward group is composed of the islands Maio, Santiago, Fogo and Brava. The archipelago has a total land surface of 4,033 km2 and an Economic Exclusive Zone (ZEE) that extends for approximately 734,000 km2. In general, the relief is very steep, culminating with high elevations (e.g. 2,829 m on Fogo and 1,979 m on Santo Antão). The surface area, geophysical configuration and geology vary greatly from one island to the next. Cape Verde, due to its geomorphology, has a dense and complex hydrographical network. However, there are no permanent water courses and temporary water courses run only during the rainy season. These temporary water courses drain quickly towards the main watersheds, where, unless captured by artificial means, continue rapidly to lower areas and to the sea. This applies equally to the flatter islands. The largest watershed is Rabil with an area of 199.2 km2. The watershed areas on other islands extend over less than 70 km2. Cape Verde is both a least developed country (LDC) and a small island development state (SIDS). In 2002, the population of Cape Verde was estimated at approximately 451,000, of whom 52% were women and 48% men. The population was growing at an average 2.4% per year, and the urban population was estimated at 53.7 %. Over the past 15 years, the Government has implemented a successful development strategy, leading to a sustained economic growth anchored on development of the private sector and the integration of Cape Verde into the world economy. During this period, the tertiary sector has become increasingly important, with strong growth in the tourism, transport, banking and trade sectors. Overall, the quality of life indicators show substantial improvements in almost all areas: housing conditions, access to drinking water and sanitation, use of modern energy in both lighting and cooking, access to health services and education. Despite these overall socio-economic successes, the primary sector has witnessed limited progress. Weak performance in the primary sector has had a severe negative impact on the incomes and poverty risks faced by rural workers1. Moreover, relative poverty has increased significantly during the past decade. The poverty profile shows that: (i) extreme poverty is mostly found in rural areas, although it has also increased in urban areas; (ii) poverty is more likely to occur when the head of the household is a woman; (iii) poverty increases with family size; (iv) education significantly affects poverty; (v) the predominantly agricultural islands of Santo Antão and Fogo have the highest poverty rates; (vi) unemployment affects the poor more than the nonpoor; (vii) agriculture and fisheries workers are more likely to be poor than those in other sectors. Therefore, the fight against poverty and income inequalities remains one of the greatest challenges for Cape Verde authorities. The various governments of Cape Verde over the last decade have demonstrated a commitment to improving governance, notably by encouraging a democratic culture that guarantees stability and democratic changes without conflicts. This democratic governance offers a space for a wider participation of citizens in public management and consolidates social cohesion. However, there are some remaining challenges related to democratic governance and the gains must be systematically monitored. Finally, it is worth emphasizing that the country’s insularity has stimulated a movement to decentralized governance, although social inequalities and contrasts from one island to the next constitute, at the same time, challenges and opportunities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose of the evaluation This is a scheduled standard mid-term evaluation (MTR) of a UNDP implemented GEF LDCF co-financed project. It is conducted by a team of an international and a national independent evaluator. The objective of the MTR, as set out in the Terms of Reference (TORs; Annex 1), is to provide an independent analysis of the progress of the project so far. The MTR aims to:  identify potential project design problems,  assess progress towards the achievement of the project objective and outcomes,  identify and document lessons learned (including lessons that might improve design and implementation of other projects, including UNDP-GEF supported projects), and  make recommendations regarding specific actions that should be taken to improve the project. The MTR is intended to assess signs of project success or failure and identify the necessary changes to be made. The project commenced its implementation in the first half of 2010 with the recruitment of project staff. According to the updated project plan, it is due to close in July 201410 with operations scaling down in December 2013 due to funding limits. Because of a slow implementation start, the mid-term evaluation was delayed to July 201311 The intended target audience of the evaluation are:  The project team and decision makers in the INGRH  The GEF and UNFCCC Operational Focal Points  The project partners and beneficiaries  UNDP in Cape Verde as well as the regional and headquarter (HQ) office levels  The GEF Secretariat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On April 27, 2007, Iowa Governor Chet Culver signed Senate File 485, a bill related to greenhouse gas emissions. Part of this bill created the Iowa Climate Change Advisory Council (ICCAC), which consists of 23 governor-appointed members from various stakeholder groups, and 4 nonvoting, ex officio members from the General Assembly. ICCAC’s immediate responsibilities included submitting a proposal to the Governor and General Assembly that addresses policies, cost-effective strategies, and multiple scenarios designed to reduce statewide greenhouse gas emissions. Further, a preliminary report was submitted in January 2008, with a final proposal submitted in December 2008. In the Final Report, the Council presents two scenarios designed to reduce statewide greenhouse gas emissions by 50% and 90% from a 2005 baseline by the year 2050. For the 50% reduction by 2050, the Council recommends approximately a 1% reduction by 2012 and an 11% reduction by 2020. For the 90% reduction scenario, the Council recommends a 3% reduction by 2012 and a 22% reduction 2020. These interim targets were based on a simple extrapolation assuming a linear rate of reduction between now and 2050. In providing these scenarios for your consideration, ICCAC approved 56 policy options from a large number of possibilities. There are more than enough options to reach the interim and final emission targets in both the 50% and 90% reduction scenarios. Direct costs and cost savings of these policy options were also evaluated with the help of The Center for Climate Strategies, who facilitated the process and provided technical assistance throughout the entire process, and who developed the Iowa Greenhouse Gas Emissions Inventory and Forecast in close consultation with the Iowa Department of Natural Resources (IDNR) and many Council and Sub-Committee members. About half of the policy options presented in this report will not only reduce GHG emissions but are highly cost-effective and will save Iowans money. Still other options may require significant investment but will create jobs, stimulate energy independence, and advance future regional or federal GHG programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PREMISE OF THE STUDY: Numerous long-term studies in seasonal habitats have tracked interannual variation in first flowering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affinity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied. METHODS: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before flowering and whether families differ significantly in the direction of their phenological shifts. KEY RESULTS: Patterns observed among species within and across sites are mirrored among family means across sites; early-flowering families advance their FFD in response to warming more than late-flowering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here. CONCLUSIONS: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-flowering families (and the absence of early-flowering families not sensitive to temperature) may reflect plasticity in flowering time, which may be adaptive in environments where early-season conditions are highly variable among years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on conclusions drawn from general climatic impact assessment in mountain regions, the review synthesizes results relevant to the European Alps published mainly from 1994 onward in the fields of population genetics, ecophysiology, phenology, phytogeography, modeling, paleoecology and vegetation dynamics. Other important factors of global change interacting synergistically with climatic factors are also mentioned, such as atmospheric CO2 concentration, eutrophication, ozone or changes in land-use. Topics addressed are general species distribution and populations (persistence, acclimation, genetic variability, dispersal, fragmentation, plant/animal interaction, species richness, conservation), potential response of vegetation (ecotonal shift - area, physiography - changes in the composition, structural changes), phenology, growth and productivity, and landscape. In conclusion, the European Alps appear to have a natural inertia and thus to tolerate an increase of 1-2 K of mean air temperature as far as plant species and ecosystems are concerned in general. However, the impact of land-use is very likely to negate this buffer in many areas. For a change of the order of 3 K or more, profound changes may be expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims Paleoclimatic data indicate that an abrupt climate change occurred at the Eocene-Oligocene (E-O) boundary affecting the distribution of tropical forests on Earth. The same period has seen the emergence of South-East (SE) Asia, caused by the collision of the Eurasian and Australian plates. How the combination of these climatic and geomorphological factors affected the spatio-temporal history of angiosperms is little known. This topic is investigated by using the worldwide sapindaceous clade as a case study. Methods Analyses of divergence time inference, diversification and biogeography (constrained by paleogeography) are applied to a combined plastid and nuclear DNA sequence data set. Biogeographical and diversification analyses are performed over a set of trees to take phylogenetic and dating uncertainty into account. Results are analysed in the context of past climatic fluctuations. Key Results An increase in the number of dispersal events at the E-O boundary is recorded, which intensified during the Miocene. This pattern is associated with a higher rate in the emergence of new genera. These results are discussed in light of the geomorphological importance of SE Asia, which acted as a tropical bridge allowing multiple contacts between areas and additional speciation across landmasses derived from Laurasia and Gondwana. Conclusions This study demonstrates the importance of the combined effect of geomorphological (the emergence of most islands in SE Asia approx. 30 million years ago) and climatic (the dramatic E-O climate change that shifted the tropical belt and reduced sea levels) factors in shaping species distribution within the sapindaceous clade.