979 resultados para - irradiated worms
Resumo:
Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an "observer's cookbook" for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric albedo.
Resumo:
Supersonic flows are expected to exist in the atmospheres of irradiated exoplanets, but the question of whether shocks develop lingers. Specifically, it reduces to whether continuous flow in a closed loop may become supersonic and if some portions of the supersonic flow steepen into shocks. We first demonstrate that continuous, supersonic flow may exist in two flavors: isentropic and non-isentropic, with shocks being included in the latter class of solutions. Supersonic flow is a necessary but insufficient condition for shocks to develop. The development of a shock requires the characteristics of neighboring points in a flow to intersect. We demonstrate that the intersection of characteristics may be quantified via the knowledge of the Mach number. Finally, we examine three-dimensional simulations of hot Jovian atmospheres and demonstrate that shock formation is expected to occur mostly on the dayside hemisphere, upstream of the substellar point, because the enhanced temperatures near the substellar point provide a natural pressure barrier for the returning flow. Understanding the role of shocks in irradiated exoplanetary atmospheres is relevant to correctly modeling observables such as the peak offsets of infrared phase curves.
Resumo:
von Ephraim Carlebach
Resumo:
von Moses Mannheimer
Resumo:
Marburg, Univ., Diss., 1903
Resumo:
BACKGROUND Gamma irradiation is currently the standard care to avoid transfusion-associated graft-versus-host disease. Guidelines on gamma irradiation of blood components state that platelets (PLTs) can be irradiated at any stage in their 5-day storage and can thereafter be stored up to their normal shelf life of 5 days after collection. In this study, we explored whether the timing of irradiation has an effect on transfusion efficacy of apheresis PLT concentrates (APCs). METHODS Based on the 1-hour percent PLT recovery (PPR1h), transfusion efficacy of 1,000 eligible APCs transfused to 144 children were evaluated retrospectively. PPR1h was compared in transfused APCs irradiated at the day of transfusion and APCs irradiated in advance. RESULTS In univariate analysis, transfusion efficacy of APCs irradiated in advance was significantly lower than that of APCs irradiated at the day of transfusion (mean PPR1h 27.7 vs. 35.0%; p = 0.007). This was confirmed in multivariate analysis (p = 0.030). Compared to non-irradiated APCs, transfusion efficacy of APCs irradiated at the day of transfusion was not significantly inferior (mean difference -2.8%; 95% CI -6.1 to 0.5%; p = 0.092), but APCs irradiated in advance were clearly less efficient (mean difference -8.1%; 95% CI -12.2 to -4.0%; p < 0.001). CONCLUSION Our data strongly support that APCs should not be irradiated in advance, 1.e., ≥24 h before transfusion.
Resumo:
von S. Rothschild
Resumo:
von Samson Rothschild
Resumo:
In Fraktur
Resumo:
nach archiv. Urkunden... von G. Wolf
Der napoleonische Erlass von 1808 wegen der Vor- und Zunamen der Juden und seine Ausführung in Worms
Resumo:
von Max Levy
Resumo:
von A. Epstein