990 resultados para óxido de cobre
Resumo:
Isotopic and elemental analysis of N, C and S in liquid and solid samples has been simplified with the advent of automated systems. The simplest method of automation for this kind of analysis involves an elemental analyzer interfaced directly to the ion source of an IRMS (Isotope Ratio Mass Spectrometry). In the analyzer reduction system, an expressive amount of oxidized copper is generated as solid residue. This material is normally imported and the price is very high. A methodology was proposed for the recovery of metallic copper in order to recycle this reagent in the reduction system of a GC-IRMS, using the hydrogen gas in the vacuum line. Results show that it is possible to obtain a recycle of about 95 % of the initial metallic copper used in the reduction system.
Resumo:
Copper, aluminum and iron concentrations were determined in four geochemical fractions of three different basaltic soils from the northwest region of the Parana State, Brazil. The fractions examined were the reducible manganese dioxide and amorphous iron oxide, crystaline iron oxide, organic and residual. Metal concentrations were determined in the extracts by flame atomic absorption spectrophotometry. High Fe concentrations were extracted from the crystalline iron oxide (>20%), as well as the amorphous iron oxide (>12%). Copper was extracted from the amorphous and crystalline iron oxides in the range 5 to 12%, but low concentrations were bound to organic matter. Low concentrations of aluminum were extracted (<8%) from the amorphous and crystaline iron oxides, and organic matter. High concentrations of aluminum were found in the residual fraction.
Resumo:
Bottom ash has been used as raw material to glass and glass ceramic production because it is a source of SiO2 and Al2O3. However, the high concentration of iron (about 10% wt.) difficulty the control of the nucleation and the crystallization processes. The iron content was reduced by magnetic process, where the magnetite phase was mainly removed. In order to compare glass ceramics obtained from original and low iron bottom ashes, microstructural and dilatometric characterizations were performed.
Resumo:
This paper describes the drawing, construction and optimization of a device, which can be used to obtain single crystals of different metallic materials with melting point from 550 to 1050 ºC. Components of ease obtaining and of low cost were used. The device was based on the modified Bridgman technique and it was used to obtain single crystals of copper-based alloys. The temperature axial profiles and a difference less then 1% in the temperature between the wall and the center of the ceramic tube in the critical region for obtaining single crystals of good quality indicated that the oven presents a good thermal stability. Single crystals of CuZnAl and CuAlAg alloys of good quality were growth and characterized using optical microscopy and Laüe X-ray back reflection.
Resumo:
Samples of copper compounds covering all of the XXth century and the end of the XIXth century were submitted to classical and instrumental quantitative analysis. The amount of impurities greatly decreased with time, reaching a constant level since the 1960's. The gravimetric method was suitable for the determination of copper although other procedures also gave good or reasonable results. However, for metal contaminants, atomic absorption spectrometry was the best choice because of its lower detection limits, being able to determine several elements in the oldest samples. Ion chromatography detected several anions in copper salts manufactured before the 1950's. An increasing quality of raw materials and a better sensitivity of analytical methods led to quality improvement of copper compounds with time.
Resumo:
The efficiency of a new procedure for the digestion of natural waters, based on a microwave-activated photochemical reactor was evaluated in this work. Fluorescence spectra showed a 99% reduction in the emission of a 40 mg L-1 humic acid solution after 15 min of UV irradiation. In the presence of H2O2, only 3 min were necessary to accomplish a reduction of almost 100% in the emission and 6 min to reduce the concentration of dissolved organic carbon by 95%. The copper recovery from synthetic samples containing commercial humic acid, from soil suspensions, as well as from natural waters varied between 91.5 and 106.6%. The digestion of dissolved and unfiltered samples was successfully accomplished in 6 and 12 min, respectively. No contaminations or sample losses were observed. Results of copper speciation in natural waters showed that this metal is predominantly bound to natural ligands. Only 3-6% of the total recoverable copper is present in the labile form.
Resumo:
The alpha-zirconium (IV) hydrogenphosphate (alpha-ZrP) has received great attention in the last years due to its properties like ion exchange, intercalation, ionic conductivity and catalytic activity. This work reports a method to produce metallic copper clusters on alpha-ZrP to be used as catalysts in petrochemical processes. It was found that the solids were non-crystalline regardless of the uptake of copper and the reduction. The specific surface area increased as a consequence of the increase of the interlayer distance to accept the copper ions between the layers. During the reduction, big clusters of copper (0,5-11µ) with different sizes and shapes were produced.
Resumo:
In this work, we report the synthesis and the photoluminescence features of Eu(III)-doped yttrium-aluminium oxide obtained by non-hydrolytic sol-gel routes. After heating the powders above 600 ºC the XRD patterns show the presence of the Y4Al2O9 (YAM) and Y3Al5O12 (YAG) phases. At 800 and at 1500 ºC the PL spectra display the Eu(III) lines characteristic of the YAM monoclinic phase. The 5D0->7F2 transition is favored relatively to the 5D0->7F1 lines. However, at 1100 ºC the cubic YAG is the preferential phase and the 5D0->7F1 transition dominates the spectrum. The Eu(III) ions lie in a centrosymmetrical site. The different solvents used in the sol-gel synthesis also change the relative proportion between these two phases. This is monitored analyzing the modifications in the relative intensity between the 5D0->7F2 and the 5D0->7F1 transitions.
Resumo:
This work reports the preparation, characterization and study of the ion exchange behavior of hydrous niobium oxide prepared by a homogeneous precipitation method. The precipitating agent was obtained in aqueous solution by thermal decomposition of urea or ammonium carbonate. The compounds were chemically and physically characterized by X-ray diffractometry, thermal analysis (TG/DTG), surface area measurements and ion exchange behavior with sodium. The materials prepared with ammonium carbonate presented a higher degree of crystallinity and better ion exchange capacity with sodium than materials prepared with urea. In the homogeneous precipitation method, materials were obtained with specific surface area of 123 - 224 m² g-1. A variation of the preparation process produced hydrous niobium oxide with a different degree of hydration and specific surface area. This provided materials with different physico-chemical properties.
Resumo:
Products resulting from the ethoxylation of hydroxylated compounds, especially water and ethanol, are of great commercial importance. This work presents several aspects concerning the catalytic reactions of ethylene oxide, a chemical substance used in the production of a wide variety of products. Mechanisms of ethoxylation, distribution of products, formation of undesired by-products and perspectives for new processes using heterogeneous catalysis are also reviewed and discussed.
Resumo:
Aluminum oxide was dispersed on a commercial silica gel surface, using successive grafting reactions. The reaction products were characterized by N2 adsorption-desorption isotherms, scanning electron microscopy and infrared spectroscopy. The progressive incorporation of aluminum, up to 5.5% (w/w), does not produce agglomeration of alumina, since changes in the original pore size distribution of the silica matrix were not observed. The aluminum oxide covers homogeneously the silica surface.
Resumo:
Nitric oxide (NO) is a substance that acts as a second-messenger and is associated with a number of important physiological functions such as regulation of the vascular tonus, immune modulation and neurotransmission. As a physiological mediator, alteration of its concentration level may cause pathophysiological disfunctions such as hypertension, septic shock and impotence. Possible therapeutic approaches are being developed to control NO levels in vivo. We review herein the main physical and chemical properties of NO, its biological functions and available chemical interventions to reduce and increment its physiological concentration levels. Recent developments in the field are also highlighted.
Resumo:
Copper content is of great concern among sugarcane-spirit producers. It is released from copper-made distillers, during the distillation process. Activated carbon has been used to remove copper. However, depending on the amount of carbon and the duration of reaction, it can also remove higher alcohols and esters, which are important in the final product. A sugarcane spirit with 9 mg L-1 of copper was shaken with 2 to 26 g L-1 of activated carbon, during 10 to 1440 minutes. Then, copper and organic compounds were measured. At least 12 g L-1 of carbon and 60 min shaking time were necessary to decrease copper bellow 5 mg L-1. However, other components of the product were also affected.
Resumo:
In the present work three ferroin reagents were studied for the simultaneous spectrophotometric determination of iron and copper: 1,10-phenanthroline, 2,2'-bipyridine and 2,4,6-tri(2-pyridyl)-1,3,5-triazine. Effect of pH, conditions, order reagent addition, interferences, amount of reagents, lineal range, sensitivity and stability of each system were compared. The 2,4,6-tri(2-pyridyl)-1,3,5-triazine can be used for determination of iron in the presence of copper with a detection limit of 5 µg L-1 and coefficient of variation of 2.0%; However it was not possible to determine directly copper in the presence of iron with this reagent. 1,10-phenanthroline can be used for simultaneous determination of the metallic ions with detection limits of 7 and 8 mg L-1 and coefficients of variation of 1.8 and 2.3% in the determination of iron and copper, respectively. The results showed also that 2,2'-bipyridine can be used for simultaneous determination of the metallic ions with detection limits of 11 and 32 µg L-1 and coefficients of variation of 1.9 and 2.5% in the determination of iron and copper, respectively. The reagents were used for spectrophotometric determination of iron and copper in ethanol fuel.
Resumo:
In this work a simple and versatile procedure is described for treating water samples using small polypropylene (PP) vials (4 mL) for determining heavy metals by square wave voltammetry (SWV). This procedure involves treatment with nitric acid (0.2 mol L-1) and boiling in a water-bath (~ 100 ºC). This process is completed after one hour and allows the pretreatment of several samples simultaneously. The accuracy was estimated using addition/recovery studies and certified water sample analysis, yielding an agreement near to 100%.