823 resultados para Ökonophysik, GPU-Computing
Resumo:
The management and coordination of business-process collaboration experiences changes because of globalization, specialization, and innovation. Service-oriented computing (SOC) is a means towards businessprocess automation and recently, many industry standards emerged to become part of the service-oriented architecture (SOA) stack. In a globalized world, organizations face new challenges for setting up and carrying out collaborations in semi-automating ecosystems for business services. For being efficient and effective, many companies express their services electronically in what we term business-process as a service (BPaaS). Companies then source BPaaS on the fly from third parties if they are not able to create all service-value inhouse because of reasons such as lack of reasoures, lack of know-how, cost- and time-reduction needs. Thus, a need emerges for BPaaS-HUBs that not only store service offers and requests together with information about their issuing organizations and assigned owners, but that also allow an evaluation of trust and reputation in an anonymized electronic service marketplace. In this paper, we analyze the requirements, design architecture and system behavior of such a BPaaS-HUB to enable a fast setup and enactment of business-process collaboration. Moving into a cloud-computing setting, the results of this paper allow system designers to quickly evaluate which services they need for instantiationg the BPaaS-HUB architecture. Furthermore, the results also show what the protocol of a backbone service bus is that allows a communication between services that implement the BPaaS-HUB. Finally, the paper analyzes where an instantiation must assign additional computing resources vor the avoidance of performance bottlenecks.
Resumo:
A Geodesic Constant Method (GCM) is outlined which provides a common approach to ray tracing on quadric cylinders in general, and yields all the surface ray-geometric parameters required in the UTD mutual coupling analysis of conformal antenna arrays in the closed form. The approach permits the incorporation of a shaping parameter which permits the modeling of quadric cylindrical surfaces of desired sharpness/flatness with a common set of equations. The mutual admittance between the slots on a general parabolic cylinder is obtained as an illustration of the applicability of the GCM.
Resumo:
We address the problem of computing the level-crossings of an analog signal from samples measured on a uniform grid. Such a problem is important, for example, in multilevel analog-to-digital (A/D) converters. The first operation in such sampling modalities is a comparator, which gives rise to a bilevel waveform. Since bilevel signals are not bandlimited, measuring the level-crossing times exactly becomes impractical within the conventional framework of Shannon sampling. In this paper, we propose a novel sub-Nyquist sampling technique for making measurements on a uniform grid and thereby for exactly computing the level-crossing times from those samples. The computational complexity of the technique is low and comprises simple arithmetic operations. We also present a finite-rate-of-innovation sampling perspective of the proposed approach and also show how exponential splines fit in naturally into the proposed sampling framework. We also discuss some concrete practical applications of the sampling technique.
Resumo:
Floquet analysis is widely used for small-order systems (say, order M < 100) to find trim results of control inputs and periodic responses, and stability results of damping levels and frequencies, Presently, however, it is practical neither for design applications nor for comprehensive analysis models that lead to large systems (M > 100); the run time on a sequential computer is simply prohibitive, Accordingly, a massively parallel Floquet analysis is developed with emphasis on large systems, and it is implemented on two SIMD or single-instruction, multiple-data computers with 4096 and 8192 processors, The focus of this development is a parallel shooting method with damped Newton iteration to generate trim results; the Floquet transition matrix (FTM) comes out as a byproduct, The eigenvalues and eigenvectors of the FTM are computed by a parallel QR method, and thereby stability results are generated, For illustration, flap and flap-lag stability of isolated rotors are treated by the parallel analysis and by a corresponding sequential analysis with the conventional shooting and QR methods; linear quasisteady airfoil aerodynamics and a finite-state three-dimensional wake model are used, Computational reliability is quantified by the condition numbers of the Jacobian matrices in Newton iteration, the condition numbers of the eigenvalues and the residual errors of the eigenpairs, and reliability figures are comparable in both the parallel and sequential analyses, Compared to the sequential analysis, the parallel analysis reduces the run time of large systems dramatically, and the reduction increases with increasing system order; this finding offers considerable promise for design and comprehensive-analysis applications.
Resumo:
In this paper, we have developed a method to compute fractal dimension (FD) of discrete time signals, in the time domain, by modifying the box-counting method. The size of the box is dependent on the sampling frequency of the signal. The number of boxes required to completely cover the signal are obtained at multiple time resolutions. The time resolutions are made coarse by decimating the signal. The loglog plot of total number of boxes required to cover the curve versus size of the box used appears to be a straight line, whose slope is taken as an estimate of FD of the signal. The results are provided to demonstrate the performance of the proposed method using parametric fractal signals. The estimation accuracy of the method is compared with that of Katz, Sevcik, and Higuchi methods. In ddition, some properties of the FD are discussed.
Resumo:
Biomedical engineering solutions like surgical simulators need High Performance Computing (HPC) to achieve real-time performance. Graphics Processing Units (GPUs) offer HPC capabilities at low cost and low power consumption. In this work, it is demonstrated that a liver which is discretized by about 2500 finite element nodes, can be graphically simulated in realtime, by making use of a GPU. Present work takes into consideration the time needed for the data transfer from CPU to GPU and back from GPU to CPU. Although behaviour of liver is very complicated, present computer simulation assumes linear elastostatics. One needs to use the commercial software ANSYS to obtain the global stiffness matrix of the liver. Results show that GPUs are useful for the real-time graphical simulation of liver, which in turn is needed in simulators that are used for training surgeons in laparoscopic surgery. Although the computer simulation should involve rendering also, neither rendering, nor the time needed for rendering and displaying the liver on a screen, is considered in the present work. The present work is just a demonstration of a concept; the concept is not really implemented and validated. Future work is to develop software which can accomplish real-time and very realistic graphical simulation of liver, with rendered image of liver on the screen changing in real-time according to the position of the surgical tool tip approximated as the mouse cursor in 3D.
Resumo:
MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.
Resumo:
Given an undirected unweighted graph G = (V, E) and an integer k ≥ 1, we consider the problem of computing the edge connectivities of all those (s, t) vertex pairs, whose edge connectivity is at most k. We present an algorithm with expected running time Õ(m + nk3) for this problem, where |V| = n and |E| = m. Our output is a weighted tree T whose nodes are the sets V1, V2,..., V l of a partition of V, with the property that the edge connectivity in G between any two vertices s ε Vi and t ε Vj, for i ≠ j, is equal to the weight of the lightest edge on the path between Vi and Vj in T. Also, two vertices s and t belong to the same Vi for any i if and only if they have an edge connectivity greater than k. Currently, the best algorithm for this problem needs to compute all-pairs min-cuts in an O(nk) edge graph; this takes Õ(m + n5/2kmin{k1/2, n1/6}) time. Our algorithm is much faster for small values of k; in fact, it is faster whenever k is o(n5/6). Our algorithm yields the useful corollary that in Õ(m + nc3) time, where c is the size of the global min-cut, we can compute the edge connectivities of all those pairs of vertices whose edge connectivity is at most αc for some constant α. We also present an Õ(m + n) Monte Carlo algorithm for the approximate version of this problem. This algorithm is applicable to weighted graphs as well. Our algorithm, with some modifications, also solves another problem called the minimum T-cut problem. Given T ⊆ V of even cardinality, we present an Õ(m + nk3) algorithm to compute a minimum cut that splits T into two odd cardinality components, where k is the size of this cut.
Resumo:
Abstract—A new breed of processors like the Cell Broadband Engine, the Imagine stream processor and the various GPU processors emphasize data-level parallelism (DLP) and threadlevel parallelism (TLP) as opposed to traditional instructionlevel parallelism (ILP). This allows them to achieve order-ofmagnitude improvements over conventional superscalar processors for many workloads. However, it is unclear as to how much parallelism of these types exists in current programs. Most earlier studies have largely concentrated on the amount of ILP in a program, without differentiating DLP or TLP. In this study, we investigate the extent of data-level parallelism available in programs in the MediaBench suite. By packing instructions in a SIMD fashion, we observe reductions of up to 91 % (84 % on average) in the number of dynamic instructions, indicating a very high degree of DLP in several applications. I.
Resumo:
The Morse-Smale complex is a useful topological data structure for the analysis and visualization of scalar data. This paper describes an algorithm that processes all mesh elements of the domain in parallel to compute the Morse-Smale complex of large two-dimensional data sets at interactive speeds. We employ a reformulation of the Morse-Smale complex using Forman's Discrete Morse Theory and achieve scalability by computing the discrete gradient using local accesses only. We also introduce a novel approach to merge gradient paths that ensures accurate geometry of the computed complex. We demonstrate that our algorithm performs well on both multicore environments and on massively parallel architectures such as the GPU.