911 resultados para [MATH] Mathematics [math]
Resumo:
Mobile devices, smartphones, phablets and tablets, are widely avail‐ able. This is a generation of digital natives. We cannot ignore that they are no longer the same students for which the education system was designed tradition‐ ally. Studying math is many times a cumbersome task. But this can be changed if the teacher takes advantage of the technology that is currently available. We are working in the use of different tools to extend the classroom in a blended learning model. In this paper, it is presented the development of an eBook for teaching mathematics to secondary students. It is developed with the free and open standard EPUB 3 that is available for Android and iOS platforms. This specification supports video embedded in the eBook. In this paper it is shown how to take advantage of this feature, making videos available about lectures and problems resolutions, which is especially interesting for learning mathematics.
Resumo:
In this study, relations among students’ perceptions of instrumental help/support from their teachers and their reading and math ability beliefs, subjective task values, and academic grades, were explored from elementary through high school. These relations were examined in an overall sample of 1,062 students from the Childhood and Beyond (CAB) study dataset, a cohort-sequential study that followed students from elementary to high school and beyond. Multi-group structural equation model (SEM) analyses were used to explore these relations in adjacent grade pairs (e.g., second grade to third grade) in elementary school and from middle school through high school separately for males and females. In addition, multi-group latent growth curve (LGC) analyses were used to explore the associations among change in the variables of interest from middle school through high school separately for males and females. The results showed that students’ perceptions of instrumental help from teachers significantly positively predicted: (a) students’ math ability beliefs and reading and math task values in elementary school within the same grade for both girls and boys, and (b) students’ reading and math ability beliefs, reading and math task values, and GPA in middle and high school within the same grade for both girls and boys. Overall, students’ perceptions of instrumental help from teachers more consistently predicted ability beliefs and task values in the academic domain of math than in the academic domain of reading. Although there were some statistically significant differences in the models for girls and boys, the direction and strength of the relations in the models were generally similar for both girls and boys. The implications for these findings and suggestions for future research are discussed.
Resumo:
The current study examined the frequency and quality of how 3- to 4-year-old children and their parents explore the relations between symbolic and non-symbolic quantities in the context of a playful math experience, as well as the role of both parent and child factors in this exploration. Preschool children’s numerical knowledge was assessed while parents completed a survey about the number-related experiences they share with their children at home, and their math-related beliefs. Parent-child dyads were then videotaped playing a modified version of the card game War. Results suggest that parents and children explored quantity explicitly on only half of the cards and card pairs played, and dyads of young children and those with lower number knowledge tended to be most explicit in their quantity exploration. Dyads with older children, on the other hand, often completed their turns without discussing the numbers at all, likely because they were knowledgeable enough about numbers that they could move through the game with ease. However, when dyads did explore the quantities explicitly, they focused on identifying numbers symbolically, used non-symbolic card information interchangeably with symbolic information to make the quantity comparison judgments, and in some instances, emphasized the connection between the symbolic and non-symbolic number representations on the cards. Parents reported that math experiences such as card game play and quantity comparison occurred relatively infrequently at home compared to activities geared towards more foundational practice of number, such as counting out loud and naming numbers. However, parental beliefs were important in predicting both the frequency of at-home math engagement as well as the quality of these experiences. In particular, parents’ specific beliefs about their children’s abilities and interests were associated with the frequency of home math activities, while parents’ math-related ability beliefs and values along with children’s engagement in the card game were associated with the quality of dyads’ number exploration during the card game. Taken together, these findings suggest that card games can be an engaging context for parent-preschooler exploration of numbers in multiple representations, and suggests that parents’ beliefs and children’s level of engagement are important predictors of this exploration.
Resumo:
The aim of this note is to formulate an envelope theorem for vector convex programs. This version corrects an earlier work, “The envelope theorem for multiobjective convex programming via contingent derivatives” by Jiménez Guerra et al. (2010) [3]. We first propose a necessary and sufficient condition allowing to restate the main result proved in the alluded paper. Second, we introduce a new Lagrange multiplier in order to obtain an envelope theorem avoiding the aforementioned error.
Resumo:
A recent study in the United Kingdom (Ofsted Report 2008) provides strong evidence that well-organized activities outside the classroom contribute significantly to the quality and depth of children's learning, including their personal, social, and emotional development. Outdoor math trails supply further evidence of such enhanced learning: They are meaningful, stimulating, challenging, and exciting for children. Most important, these trails invite all students, irrespective of their classroom achievement level, to participate successfully in the problem activities and gain a sense of pride in the mathematics they create. Additionally, Math trails empower lifelong learning. Integrating "outside" mathematics with "inside" classroom mathematics can sow the seeds to develop flexible, creative, future-oriented mathematical thinkers and problem solvers. Here, English et al discuss how to design and implement math trails to promote active, meaningful, real-world mathematical learning beyond the classroom walls.
Resumo:
a presentation about immersive visualised simulation systems, image analysis and GPGPU Techonology
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by “continuing education as usual” (The National Academies, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualization. These technologies have led to significant changes in the forms of mathematical thinking that are required beyond the classroom. This paper argues for the need to incorporate future-oriented understandings and competencies within the mathematics curriculum, through intellectually stimulating activities that draw upon multidisciplinary content and contexts. The paper also argues for greater recognition of children’s learning potential, as increasingly complex learners capable of dealing with cognitively demanding tasks.
Resumo:
In 2010 Berezhkovskii and coworkers introduced the concept of local accumulation time (LAT) as a finite measure of the time required for the transient solution of a reaction diffusion equation to effectively reach steady state(Biophys J. 99, L59 (2010); Phys Rev E. 83, 051906 (2011)). Berezhkovskii’s approach is a particular application of the concept of mean action time (MAT) that was introduced previously by McNabb (IMA J Appl Math. 47, 193 (1991)). Here, we generalize these previous results by presenting a framework to calculate the MAT, as well as the higher moments, which we call the moments of action. The second moment is the variance of action time; the third moment is related to the skew of action time, and so on. We consider a general transition from some initial condition to an associated steady state for a one–dimensional linear advection–diffusion–reaction partial differential equation(PDE). Our results indicate that it is possible to solve for the moments of action exactly without requiring the transient solution of the PDE. We present specific examples that highlight potential weaknesses of previous studies that have considered the MAT alone without considering higher moments. Finally, we also provide a meaningful interpretation of the moments of action by presenting simulation results from a discrete random walk model together with some analysis of the particle lifetime distribution. This work shows that the moments of action are identical to the moments of the particle lifetime distribution for certain transitions.
Resumo:
In this paper, we will discuss the issue of rostering jobs of cabin crew attendants at KLM. Generated schedules get easily disrupted by events such as illness of an employee. Obviously, reserve people have to be kept 'on duty' to resolve such disruptions. A lot of reserve crew requires more employees, but too few results in so-called secondary disruptions, which are particularly inconvenient for both the crew members and the planners. In this research we will discuss several modifications of the reserve scheduling policy that have a potential to reduce the number of secondary disruptions, and therefore to improve the performance of the scheduling process.
Resumo:
This article focuses on problem solving activities in a first grade classroom in a typical small community and school in Indiana. But, the teacher and the activities in this class were not at all typical of what goes on in most comparable classrooms; and, the issues that will be addressed are relevant and important for students from kindergarten through college. Can children really solve problems that involve concepts (or skills) that they have not yet been taught? Can children really create important mathematical concepts on their own – without a lot of guidance from teachers? What is the relationship between problem solving abilities and the mastery of skills that are widely regarded as being “prerequisites” to such tasks?Can primary school children (whose toolkits of skills are limited) engage productively in authentic simulations of “real life” problem solving situations? Can three-person teams of primary school children really work together collaboratively, and remain intensely engaged, on problem solving activities that require more than an hour to complete? Are the kinds of learning and problem solving experiences that are recommended (for example) in the USA’s Common Core State Curriculum Standards really representative of the kind that even young children encounter beyond school in the 21st century? … This article offers an existence proof showing why our answers to these questions are: Yes. Yes. Yes. Yes. Yes. Yes. And: No. … Even though the evidence we present is only intended to demonstrate what’s possible, not what’s likely to occur under any circumstances, there is no reason to expect that the things that our children accomplished could not be accomplished by average ability children in other schools and classrooms.
Resumo:
In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type.
Resumo:
The foliage of a plant performs vital functions. As such, leaf models are required to be developed for modelling the plant architecture from a set of scattered data captured using a scanning device. The leaf model can be used for purely visual purposes or as part of a further model, such as a fluid movement model or biological process. For these reasons, an accurate mathematical representation of the surface and boundary is required. This paper compares three approaches for fitting a continuously differentiable surface through a set of scanned data points from a leaf surface, with a technique already used for reconstructing leaf surfaces. The techniques which will be considered are discrete smoothing D2-splines [R. Arcangeli, M. C. Lopez de Silanes, and J. J. Torrens, Multidimensional Minimising Splines, Springer, 2004.], the thin plate spline finite element smoother [S. Roberts, M. Hegland, and I. Altas, Approximation of a Thin Plate Spline Smoother using Continuous Piecewise Polynomial Functions, SIAM, 1 (2003), pp. 208--234] and the radial basis function Clough-Tocher method [M. Oqielat, I. Turner, and J. Belward, A hybrid Clough-Tocher method for surface fitting with application to leaf data., Appl. Math. Modelling, 33 (2009), pp. 2582-2595]. Numerical results show that discrete smoothing D2-splines produce reconstructed leaf surfaces which better represent the original physical leaf.
Resumo:
We prove the existence of novel, shock-fronted travelling wave solutions to a model of wound healing angiogenesis studied in Pettet et al (2000 IMA J. Math. App. Med. 17 395–413) assuming two conjectures hold. In the previous work, the authors showed that for certain parameter values, a heteroclinic orbit in the phase plane representing a smooth travelling wave solution exists. However, upon varying one of the parameters, the heteroclinic orbit was destroyed, or rather cut-off, by a wall of singularities in the phase plane. As a result, they concluded that under this parameter regime no travelling wave solutions existed. Using techniques from geometric singular perturbation theory and canard theory, we show that a travelling wave solution actually still exists for this parameter regime. We construct a heteroclinic orbit passing through the wall of singularities via a folded saddle canard point onto a repelling slow manifold. The orbit leaves this manifold via the fast dynamics and lands on the attracting slow manifold, finally connecting to its end state. This new travelling wave is no longer smooth but exhibits a sharp front or shock. Finally, we identify regions in parameter space where we expect that similar solutions exist. Moreover, we discuss the possibility of more exotic solutions.
Resumo:
It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986)] that the Euler Painlevé equation yy[script `]+ay[script ']2+ f(x)yy[script ']+g(x) y2+by[script ']+c=0 represents the generalized Burgers equations (GBE's) in the same manner as Painlevé equations do the KdV type. The GBE was treated with a damping term in some detail. In this paper another GBE ut+uaux+Ju/2t =(gd/2)uxx (the nonplanar Burgers equation) is considered. It is found that its self-similar form is again governed by the Euler Painlevé equation. The ranges of the parameter alpha for which solutions of the connection problem to the self-similar equation exist are obtained numerically and confirmed via some integral relations derived from the ODE's. Special exact analytic solutions for the nonplanar Burgers equation are also obtained. These generalize the well-known single hump solutions for the Burgers equation to other geometries J=1,2; the nonlinear convection term, however, is not quadratic in these cases. This study fortifies the conjecture regarding the importance of the Euler Painlevé equation with respect to GBE's. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
This research is based on the problems in secondary school algebra I have noticed in my own work as a teacher of mathematics. Algebra does not touch the pupil, it remains knowledge that is not used or tested. Furthermore the performance level in algebra is quite low. This study presents a model for 7th grade algebra instruction in order to make algebra more natural and useful to students. I refer to the instruction model as the Idea-based Algebra (IDEAA). The basic ideas of this IDEAA model are 1) to combine children's own informal mathematics with scientific mathematics ("math math") and 2) to structure algebra content as a "map of big ideas", not as a traditional sequence of powers, polynomials, equations, and word problems. This research project is a kind of design process or design research. As such, this project has three, intertwined goals: research, design and pedagogical practice. I also assume three roles. As a researcher, I want to learn about learning and school algebra, its problems and possibilities. As a designer, I use research in the intervention to develop a shared artefact, the instruction model. In addition, I want to improve the practice through intervention and research. A design research like this is quite challenging. Its goals and means are intertwined and change in the research process. Theory emerges from the inquiry; it is not given a priori. The aim to improve instruction is normative, as one should take into account what "good" means in school algebra. An important part of my study is to work out these paradigmatic questions. The result of the study is threefold. The main result is the instruction model designed in the study. The second result is the theory that is developed of the teaching, learning and algebra. The third result is knowledge of the design process. The instruction model (IDEAA) is connected to four main features of good algebra education: 1) the situationality of learning, 2) learning as knowledge building, in which natural language and intuitive thinking work as "intermediaries", 3) the emergence and diversity of algebra, and 4) the development of high performance skills at any stage of instruction.