973 resultados para (0001) sapphire substrates
Resumo:
When water is coadsorbed with oxygen at coverages above 0.25ML an intact water species is observed in high resolution X-ray photoelectron spectroscopy up to 220 K, which is significantly more stable than intact water on the clean surface. The presence of this species causes a shift in the O 1s binding energy of the pre-adsorbed oxygen, which indicates the formation of hydrogen bonds between the two adsorbates. Low coverages of oxygen induce partial dissociation and recombinative desorption in the same temperature range, which illustrates that desorption temperatures alone cannot be used to determine whether water is molecularly intact or not.
Resumo:
Core-level photoelectron spectra, in excellent agreement with ab initio calculations, confirm that the stable wetting layer of water on Ru{0001} contains O-H and H2O in roughly 3:5 proportion, for OHx coverages between 0.25 and 0.7 ML, and T<170 K. Proton disorder explains why the wetting structure looks to low energy electron diffraction (LEED) to be an ordered p(root3xroot3)R30degrees adlayer, even though approximate to3/8 of its molecules are dissociated. Complete dissociation to atomic oxygen starts near 190 K. Low photon flux in the synchrotron experiments ensured that the diagnosis of the nature of the wetting structure quantified by LEED is free of beam-induced damage.
A refined LEED analysis of water on Ru{0001}: an experimental test of the partial dissociation model
Resumo:
Despite a number of earlier studies which seemed to confirm molecular adsorption of water on close-packed surfaces of late transition metals, new controversy has arisen over a recent theoretical work by Feibelman, according to which partial dissociation occurs on the Ru{0001} surface leading to a mixed (H2O + OH + H) superstructure. Here, we present a refined LEED-IV analysis of the (root3 x root3)R30degrees-D2O-Ru{0001} structure, testing explicitly this new model by Feibelman. Our results favour the model proposed earlier by Held and Menzel assuming intact water molecules with almost coplanar oxygen atoms and out-of-plane hydrogen atoms atop the slightly higher oxygen atoms. The partially dissociated model with an almost identical arrangement of oxygen atoms can, however, not unambiguously be excluded, especially when the single hydrogen atoms are not present in the surface unit cell. In contrast to the earlier LEED-IV analysis, we can, however, clearly exclude a buckled geometry of oxygen atoms.
Resumo:
This invention relates to the manufacture of coated substrates, and particularly, but not exclusively, to the deposition of multi-layer coatings in the manufacture of interference filters consisting of multiple thin films. An object of the invention is to allow accurate control of the deposition of a succession of layers having good uniformity, for example during the manufacture by vacuum evaporation of multilayer interference filters for use with infrared radiation of particularly long wavelength, using a method which is self calibrating and which avoids the repetitive use of individual control layers.
Resumo:
The hexaazamacrocycles [28](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminoethyleneiminoethylene]} and [32](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminopropyleneiminopropylene]} form stable dinuclear copper(II) complexes suitable to behave as receptors for several anionic substrates. These two receptors were used to study the binding interactions with several substrates, such as imidazole (Him) and some carboxylates [benzoate (bz−), oxalate (ox2−), malonate (mal2−), phthalate (ph2−), isophthalate (iph2−), and terephthalate (tph2−)] by spectrophotometric titrations and EPR spectroscopy in MeOH (or H2O):DMSO (1:1 v/v) solution. The largest association constant was found for ox2− with Cu2[32](DBF)2N64+, whereas for the aromatic dicarboxylate anions the binding constants follow the trend ph2− > iph2− > tph2−, i.e. decrease with the increase of the distance of the two binding sites of the substrate. On the other hand, the large blue shift of 68 nm observed by addition of Him to Cu2[32](DBF)2N64+ points out for the formation of the bridged CuimCu cascade complex, indicating this receptor as a potential sensor for the detection and determination of imidazole in solution. The X-band EPR spectra of the Cu2[28](DBF)2N64+ and Cu2[32](DBF)2N6]4+ complexes and the cascade complexes with the substrates, performed in H2O:DMSO (1:1 v/v) at 5 to 15 K, showed that the CuCu distance is slightly larger than the one found in crystal state and that this distance increases when the substrate is accommodated between the two copper centres. The crystal structure of [Cu2[28](DBF)2N6(ph)2]·CH3OH was determined by X-ray diffraction and revealed the two copper centres bridged by two ph2− anions at a Cu···Cu distance of 5.419(1) Å. Each copper centre is surrounded by three carboxylate oxygen atoms from two phthalate anions and three contiguous nitrogen atoms of the macrocycle in a pseudo octahedral coordination environment.
Resumo:
Ultrathin bimetallic layers create unusual magnetic and surface chemical effects through the modification of electronic structure brought on by low dimensionality, polymorphism, reduced screening, and epitaxial strain. Previous studies have related valence and core-level shifts to surface reactivity through the d-band model of Hammer and Nørskov, and in heteroepitaxial films this band position is determined by competing effects of coordination, strain, and hybridization of substrate and overlayer states. In this study we employ the epitaxially matched Pd on Re{0001} system to grow films with no lateral strain. We use a recent advancement in low-energy electron diffraction to expand the data range sufficiently for a reliable determination of the growth sequence and out-of-plane surface relaxation as a function of film thickness. The results are supported by scanning tunneling microscopy and X-ray photoemission spectroscopy, which show that the growth is layer-by-layer with significant core-level shifts due to changes in film structure, morphology, and bonding.
Resumo:
We present helium scattering measurements of a water ad-layer grown on a O(2 1)/Ru(0001) surface. The adsorbed water layer results in a well ordered helium diffraction pattern with systematic extinctions of diffraction spots due to glide line symmetries. The data reflects a well-defined surface structure that maintains proton order even at surprisingly high temperatures of 140 K. The diffraction data we measure is consistent with a structure recently derived from STM measurements performed at 6 K. Comparison with recent DFT calculation is in partial agreement, suggesting that these calculations might be underestimating the contribution of relative water molecule orientations to the binding energy.
Resumo:
The layer-by-layer deposition of polymers onto surfaces allows the fabrication of multilayered materials for a wide range of applications, from drug delivery to biosensors. This work describes the analysis of complex formation between poly(acrylic acid) and methylcellulose in aqueous solutions using Biacore, a surface plasmon resonance analytical technique, traditionally used to examine biological interactions. This technique characterized the layer-by-layer deposition of these polymers on the surface of a Biacore sensor chip. The results were subsequently used to optimize the experimental conditions for sequential layer deposition on glass slides. The role of the solution pH and poly(acrylic acid) molecular weight on the formation of interpolymer multilayered coatings was researched, and showed that the optimal deposition of the polymer complexes was achieved at pHs ≤2.5 with a poly(acrylic acid) molecular weight of 450 kDa.
Resumo:
To understand whether genotypic variation in root-associated phosphatase activities in wheat impacts on its ability to acquire phosphorus (P), various phosphatase activities of roots were measured in relation to the utilization of organic P substrates in agar, and the P-nutrition of plants was investigated in a range of soils. Root-associated phosphatase activities of plants grown in hydroponics were measured against different organic P substrates. Representative genotypes were then grown in both agar culture and in soils with differing organic P contents and plant biomass and P uptake were determined. Differences in the activities of both root-associated and exuded phosphodiesterase and phosphomonoesterase were observed, and were related to the P content of plants supplied with either ribonucleic acid or glucose 6-phosphate, respectively, as the sole form of P. When the cereal lines were grown in different soils, however, there was little relationship between any root-associated phosphatase activity and plant P uptake. This indicates that despite differences in phosphatase activities of cereal roots, such variability appears to play no significant role in the P-nutrition of the plant grown in soil, and that any benefit derived from the hydrolysis of soil organic P is common to all genotypes.
Resumo:
It is estimated that the adult human brain contains 100 billion neurons with 5–10 times as many astrocytes. Although it has been generally considered that the astrocyte is a simple supportive cell to the neuron, recent research has revealed new functionality of the astrocyte in the form of information transfer to neurons of the brain. In our previous work we developed a protocol to pattern the hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO2 substrates. In this work, we report how we have managed to pattern hNT astrocytes, on parylene-C/SiO2 substrates to single cell resolution. This article disseminates the nanofabrication and cell culturing steps necessary for the patterning of such cells. In addition, it reports the necessary strip lengths and strip width dimensions of parylene-C that encourage high degrees of cellular coverage and single cell isolation for this cell type. The significance in patterning the hNT astrocyte on silicon chip is that it will help enable single cell and network studies into the undiscovered functionality of this interesting cell, thus, contributing to closer pathological studies of the human brain.
Resumo:
We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized ‘on’, ‘adjacent to’ and ‘away from’ the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode.
Resumo:
In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level.
Resumo:
In our previous work we developed a successful protocol to pattern the human hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO2 substrates. This communication, reports how we have successfully managed to pattern the supportive cell to the neuron, the hNT astrocyte, on such substrates. Here we disseminate the nanofabrication, cell differentiation and cell culturing protocols necessary to successfully pattern the first human hNT astrocytes to single cell resolution on parylene-C/SiO2 substrates. This is performed for varying parylene strip widths providing excellent contrast to the SiO2 substrate and elegant single cell isolation at 10μm strip widths. The breakthrough in patterning human cells on a silicon chip has widespread implications and is valuable as a platform technology as it enables a detailed study of the human brain at the cellular and network level.
Resumo:
Pine wood and barley straw biochar amendments to Kettering and Cameroon sandy silt loam soils (15, 30, or 150 mg biochar g−1 soil) caused significant reductions (up to 80%,