963 resultados para yeast flotation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene expression profile, generating a suitable adaptive response to each environmental change. Although some of the requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends. These results are consistent with resource limitation being important in the evolution of the first group of stress responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Understanding the relationship between gene expression changes, enzyme activity shifts, and the corresponding physiological adaptive response of organisms to environmental cues is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock involves a characteristic profile of changes to the expression levels of genes coding for enzymes of the glycolytic pathway and some of its branches. The experimental determination of changes in gene expression profiles provides a descriptive picture of the adaptive response to stress. However, it does not explain why a particular profile is selected for any given response. Results: We used mathematical models and analysis of in silico gene expression profiles (GEPs) to understand how changes in gene expression correlate to an efficient response of yeast cells to heat shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was simulated and analyzed. The effectiveness of each profile in the response to heat shock was evaluated according to relevant physiological and functional criteria. The small subset of GEPs that lead to effective physiological responses after heat shock was identified as the result of the tuning of several evolutionary criteria. The experimentally observed transcriptional changes in response to heat shock belong to this set and can be explained by quantitative design principles at the physiological level that ultimately constrain changes in gene expression. Conclusion: Our theoretical approach suggests a method for understanding the combined effect of changes in the expression of multiple genes on the activity of metabolic pathways, and consequently on the adaptation of cellular metabolism to heat shock. This method identifies quantitative design principles that facilitate understating the response of the cell to stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results: Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions: We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The G1-to-S transition of the cell cycle in the yeast Saccharomyces cerevisiae involves an extensive transcriptional program driven by transcription factors SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). Activation of these factors ultimately depends on the G1 cyclin Cln3. Results: To determine the transcriptional targets of Cln3 and their dependence on SBF or MBF, we first have used DNA microarrays to interrogate gene expression upon Cln3 overexpression in synchronized cultures of strains lacking components of SBF and/or MBF. Secondly, we have integrated this expression dataset together with other heterogeneous data sources into a single probabilistic model based on Bayesian statistics. Our analysis has produced more than 200 transcription factor-target assignments, validated by ChIP assays and by functional enrichment. Our predictions show higher internal coherence and predictive power than previous classifications. Our results support a model whereby SBF and MBF may be differentially activated by Cln3. Conclusions: Integration of heterogeneous genome-wide datasets is key to building accurate transcriptional networks. By such integration, we provide here a reliable transcriptional network at the G1-to-S transition in the budding yeast cell cycle. Our results suggest that to improve the reliability of predictions we need to feed our models with more informative experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25uC to 37uC. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure-the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In the yeast biomass production process, protein carbonylation has severe adverse effects since it diminishes biomass yield and profitability of industrial production plants. However, this significant detriment of yeast performance can be alleviated by increasing thioredoxins levels. Thioredoxins are important antioxidant defenses implicated in many functions in cells, and their primordial functions include scavenging of reactive oxygen species that produce dramatic and irreversible alterations such as protein carbonylation. Results: In this work we have found several proteins specifically protected by yeast Thioredoxin 2 (Trx2p). Bidimensional electrophoresis and carbonylated protein identification from TRX-deficient and TRX-overexpressing cells revealed that glycolysis and fermentation-related proteins are specific targets of Trx2p protection. Indeed, the TRX2 overexpressing strain presented increased activity of the central carbon metabolism enzymes. Interestingly, Trx2p specifically preserved alcohol dehydrogenase I (Adh1p) from carbonylation, decreased oligomer aggregates and increased its enzymatic activity. Conclusions: The identified proteins suggest that the fermentative capacity detriment observed under industrial conditions in T73 wine commercial strain results from the oxidative carbonylation of specific glycolytic and fermentation enzymes. Indeed, increased thioredoxin levels enhance the performance of key fermentation enzymes such as Adh1p, which consequently increases fermentative capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell polarity is essential for various cellular functions during both proliferative and developmental stages, and it displays dynamic alterations in response to intracellular and extracellular cues. However, the molecular mechanisms underlying spatiotemporal control of polarity transition are poorly understood. Here, we show that fission yeast Cki3 (a casein kinase 1γ homolog) is a critical regulator to ensure persistent monopolar growth during S phase. Unlike the wild type, cki3 mutant cells undergo bipolar growth when S phase is blocked, a condition known to delay transition from monopolar to bipolar growth (termed NETO [new end takeoff]). Consistent with this role, Cki3 kinase activity is substantially increased, and cells lose their viability in the absence of Cki3 upon an S-phase block. Cki3 acts downstream of the checkpoint kinase Cds1/Chk2 and calcineurin, and the latter physically interacts with Cki3. Autophosphorylation in the C terminus is inhibitory toward Cki3 kinase activity, and calcineurin is responsible for its dephosphorylation. Cki3 localizes to the plasma membrane, and this localization requires the palmitoyltransferase complex Erf2-Erf4. Membrane localization is needed not only for proper NETO timing but also for Cki3 kinase activity. We propose that Cki3 acts as a critical inhibitor of cell polarity transition under S-phase arrest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed an activator/repressor expression system for budding yeast in which tetracyclines control in opposite ways the ability of tetR-based activator and repressor molecules to bind tetO promoters. This combination allows tight expression of tetO-driven genes, both in a direct (tetracycline-repressible) and reverse (tetracycline-inducible) dual system. Ssn6 and Tup1, that are components of a general repressor complex in yeast, have been tested for their repressing properties in the dual system, using lacZ and CLN2 as reporter genes. Ssn6 gives better results and allows complete switching-off of the regulated genes, although increasing the levels of the Tup1-based repressor by expressing it from a stronger promoter improves repressing efficiency of the latter. Effector-mediated shifts between expression and non-expression conditions are rapid. The dual system here described may be useful for the functional analysis of essential genes whose conditional expression can be tightly controlled by tetracyclines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomes of two hemiascomycetous yeasts (Saccharomyces cerevisiae and Candida albicans) and one archiascomycete (Schizosaccharomyces pombe) have been completely sequenced and the genes have been annotated. In addition, the genomes of 13 more Hemiascomycetes have been partially sequenced. The amount of data thus obtained provides information on the evolutionary relationships between yeast species. In addition, the differential genetic characteristics of the microorganisms explain a number of distinctive biological traits. Gene order conservation is observed between phylogenetically close species and is lost in distantly related species, probably due to rearrangements of short regions of DNA. However, gene function is much more conserved along evolution. Compared to S. cerevisiae and S. pombe, C. albicans has a larger number of specific genes, i.e., genes not found in other organisms, a fact that can account for the biological characteristics of this pathogenic dimorphic yeast which is able to colonize a large variety of environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena oli sekundäärisen esiflotaation optimointi Stora Enso Sachsen GmbH:n tehtaalla. Optimoinnin muuttujana käytettiin vaahdon määrää ja optimointiparametreinä ISO-vaaleutta, saantoja sekä tuhkapitoisuutta. Lisäksi tutkittiin flotaatiosakeuden vaikutusta myös muihin tehtaan flotaatioprosesseihin. Kirjallisuusosassa tarkasteltiin flotaatiotapahtumaa, poistettavien partikkeleiden ja ilmakuplien kontaktia, vaahdon muodostumista sekä tärkeimpiä käytössä olevia siistausflotaattoreiden laiteratkaisuja. Kokeellisessa osassa tutkittiin flotaatiosakeuden pienetämisen vaikutuksia tehtaan flotaatioprosesseihin tuhkapitoisuuden, ISO-vaaleuden, valon sironta- ja valon absorpiokerrointen kannalta. Sekundäärisen esiflotaation optimonti suoritettiin muuttamalla vaahdon määrää kolmella erilaisella injektorin koolla, (8 mm, 10 mm ja 13 mm), joista keskimmäinen kasvattaa 30 % massan tilavuusvirtaa ilmapitoisuuden muodossa. Optimonnin tarkoituksena oli kasvattaa hyväksytyn massajakeen ISO-vaaleutta, sekä kasvattaa kuitu- ja kokonaissaantoa sekundäärisessä esiflotaatiossa. Flotaatiosakeuden pienentämisellä oli edullisia vaikutuksia ISO-vaaleuteen ja valon sirontakertoimeen kussakin flotaatiossa. Tuhkapitoisuus pieneni sekundäärisissä flotaatioissa enemmän sakeuden ollessa pienempi, kun taas primäärisissä flotaatiossa vaikutus oli päinvastainen. Valon absorptiokerroin parani jälkiflotaatioissa alhaisemmalla sakeudella, kun taas esiflotaatioissa vaikutus oli päinvastainen. Sekundäärisen esiflotaation optimoinnin tuloksena oli lähes 5 % parempi ISO-vaaleus hyväksytyssä massajakeessa. Kokonaissaanto parani optimoinnin myötä 5 % ja kuitusaanto 2 %. Saantojen nousu tuottaa vuosittaisia säästöjä siistauslaitoksen tuotantokapasiteetin noustessa 0,5 %. Tämän lisäksi sekundäärisessä esiflotaatiossa rejektoituvan massavirran pienentyminen tuottaa lisäsäästöjä tehtaan voimalaitoksella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence microscopy has enabled the analysis of both the spatial distribution of DNA damage and its dynamics during the DNA damage response (DDR). Three microscopic techniques can be used to study the spatiotemporal dynamics of DNA damage. In the first part we describe how we determine the position of DNA double-strand breaks (DSBs) relative to the nuclear envelope. The second part describes how to quantify the co-localization of DNA DSBs with nuclear pore clusters, or other nuclear subcompartments. The final protocols describe methods for the quantification of locus mobility over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brown packaging linerboard, made entirely from recovered pulp, was subjected to deinking flotation for evaluating the possible improvements in its chemical, optical and mechanical properties. The increase in the rate of recovered paper utilisation, along with the tendency towards lower basis weights, in the packaging paper production, has created a growing need for the utilisation of secondary fibers of improved quality. To attain better quality fibers, flotation deinking of brown grades is being considered, along with the addition of primary fibers to recovered paper furnish. Numerous conducted studies, in which the flotation technology was used in the treatment of brown grades, support this idea. Most of them show that the quality of fibers is improved after flotation deinking, resulting in higher mechanical properties of the deinked handsheets and in lower amounts of chemical contaminants. As to food and human health safety, packaging paper has to meet specific requirements, to be classified as suitable for its direct contact with foods. Recycled paper and board may contain many potential contaminants, which, especially in the case of direct food contact, may migrate from packaging materials into foodstuffs. In this work, the linerboard sample selected for deinking was made from recycled fibers not submitted previously to chemical deinking flotation. Therefore, the original sample contained many noncellulosic components, as well as the residues of printing inks. The studied linerboardsample was a type of packaging paper used for contact with food products that are usually peeled before use, e.g. fruits and vegetables. The decrease in the amount of chemical contaminants, after conducting deinking flotation, was evaluated, along with the changes in the mechanical and optical properties of the deinked handsheets. Food contact analysis was done on both the original paper samples and the filter pads and handsheets made before and after deinking flotation. Food contact analysis consisted of migration tests of brightening agents, colorants, PCPs, formaldehydes and metals. Microbiological tests were also performed to determine the possible transfer of antimicrobial constituents