871 resultados para wireless network coding


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, due to the rapid convergence of multimedia services, Internet and wireless communications, there has been a growing trend of heterogeneity (in terms of channel bandwidths, mobility levels of terminals, end-user quality-of-service (QoS) requirements) for emerging integrated wired/wireless networks. Moreover, in nowadays systems, a multitude of users coexists within the same network, each of them with his own QoS requirement and bandwidth availability. In this framework, embedded source coding allowing partial decoding at various resolution is an appealing technique for multimedia transmissions. This dissertation includes my PhD research, mainly devoted to the study of embedded multimedia bitstreams in heterogenous networks, developed at the University of Bologna, advised by Prof. O. Andrisano and Prof. A. Conti, and at the University of California, San Diego (UCSD), where I spent eighteen months as a visiting scholar, advised by Prof. L. B. Milstein and Prof. P. C. Cosman. In order to improve the multimedia transmission quality over wireless channels, joint source and channel coding optimization is investigated in a 2D time-frequency resource block for an OFDM system. We show that knowing the order of diversity in time and/or frequency domain can assist image (video) coding in selecting optimal channel code rates (source and channel code rates). Then, adaptive modulation techniques, aimed at maximizing the spectral efficiency, are investigated as another possible solution for improving multimedia transmissions. For both slow and fast adaptive modulations, the effects of imperfect channel estimation errors are evaluated, showing that the fast technique, optimal in ideal systems, might be outperformed by the slow adaptive modulation, when a real test case is considered. Finally, the effects of co-channel interference and approximated bit error probability (BEP) are evaluated in adaptive modulation techniques, providing new decision regions concepts, and showing how the widely used BEP approximations lead to a substantial loss in the overall performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MoNET e' un emulatore per reti wireless mobili, composto da una suite di software distribuiti. MoNET fornisce a ricercatori e sviluppatori un ambiente virtualizzato controllato per lo sviluppo e il test di applicazioni mobili e protocolli di rete per qualsiasi tipologia di hardware e piattaforma software che possa essere virtualizzata. La natura distribuita di questo emulatore permette di creare scenari di dimensione arbitraria. La rete wireless viene emulata in maniera trasparente, quindi la connettività percepita da ogni nodo virtuale, presenta le stesse caratteristiche di quella fisica emulata.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work has been realized by the author in his PhD course in Electrical, Computer Science and Telecommunication at the University of Bologna, Faculty of Engineering, Italy. All the documentation here reported is a summary of years of work, under the supervision of Prof. Oreste Andrisano, coordinator of Wireless Communication Laboratory - WiLab, in Bologna. The subject of this thesis is the transmission of video in a context of heterogeneous network, and in particular, using a wireless channel. All the instrumentation that has been used for the characterization of the telecommunication systems belongs to CNR (National Research Council), CNIT (Italian Inter- University Center), and DEIS (Dept. of Electrical, Computer Science, and Systems). From November 2009 to July 2010, the author spent his time abroad, working in collaboration with DLR - German Aerospace Center in Munich, Germany, on channel coding area, developing a general purpose decoder machine to decode a huge family of iterative codes. A patent concerning Doubly Generalized-Low Density Parity Check codes has been produced by the author as well as some important scientic papers, published on IEEE journals and conferences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Negli ultimi dieci anni si è rinnovata l’esigenza di sviluppare nuove tecnologie legate alla telemedicina, specie a seguito dello sviluppo dei sistemi di telecomunicazione che consentono ad ogni persona di avere a disposizione sistemi portatili, come gli smartphone, sempre connessi e pronti a comunicare. Lo stesso sviluppo si è avuto all’interno dei sistemi sanitari in cui è diventato fondamentale informatizzare le attività ospedaliere per via del contesto demografico a cui si va incontro: invecchiamento della popolazione e aumento del numero di pazienti affetti da malattie croniche. Tutti questi aspetti portano all’attuazione di un cambiamento strategico. Le Body Area Network, fulcro di questo lavoro di tesi, rappresentano la risposta a questa necessità. Si spiegano l'architettura e le tecnologie abilitanti per la realizzazione di queste reti di sensori, gli standard di comunicazione tramite i quali avviene la trasmissione dei dati e come le reti si interfacciano con i pazienti e le strutture sanitarie. Si conclude con una panoramica sui sensori di una BAN e alcuni esempi in commercio.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data gathering, either for event recognition or for monitoring applications is the primary intention for sensor network deployments. In many cases, data is acquired periodically and autonomously, and simply logged onto secondary storage (e.g. flash memory) either for delayed offline analysis or for on demand burst transfer. Moreover, operational data such as connectivity information, node and network state is typically kept as well. Naturally, measurement and/or connectivity logging comes at a cost. Space for doing so is limited. Finding a good representative model for the data and providing clever coding of information, thus data compression, may be a means to use the available space to its best. In this paper, we explore the design space for data compression for wireless sensor and mesh networks by profiling common, publicly available algorithms. Several goals such as a low overhead in terms of utilized memory and compression time as well as a decent compression ratio have to be well balanced in order to find a simple, yet effective compression scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With research on Wireless Sensor Networks (WSNs) becoming more and more mature in the past five years, researchers from universities all over the world have set up testbeds of wireless sensor networks, in most cases to test and evaluate the real-world behavior of developed WSN protocol mechanisms. Although these testbeds differ heavily in the employed sensor node types and the general architectural set up, they all have similar requirements with respect to management and scheduling functionalities: as every shared resource, a testbed requires a notion of users, resource reservation features, support for reprogramming and reconfiguration of the nodes, provisions to debug and remotely reset sensor nodes in case of node failures, as well as a solution for collecting and storing experimental data. The TARWIS management architecture presented in this paper targets at providing these functionalities independent from node type and node operating system. TARWIS has been designed as a re-usable management solution for research and/or educational oriented research testbeds of wireless sensor networks, relieving researchers intending to deploy a testbed from the burden to implement their own scheduling and testbed management solutions from scratch.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We developed UAVNet, a framework for the autonomous deployment of a flying Wireless Mesh Network using small quadrocopter-based Unmanned Aerial Vehicles (UAVs). The flying wireless mesh nodes are automatically interconnected to each other and building an IEEE 802.11s wireless mesh network. The implemented UAVNet prototype is able to autonomously interconnect two end systems by setting up an airborne relay, consisting of one or several flying wireless mesh nodes. The developed software includes basic functionality to control the UAVs and to setup, deploy, manage, and monitor a wireless mesh network. Our evaluations have shown that UAVNet can significantly improve network performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tracking or target localization is used in a wide range of important tasks from knowing when your flight will arrive to ensuring your mail is received on time. Tracking provides the location of resources enabling solutions to complex logistical problems. Wireless Sensor Networks (WSN) create new opportunities when applied to tracking, such as more flexible deployment and real-time information. When radar is used as the sensing element in a tracking WSN better results can be obtained; because radar has a comparatively larger range both in distance and angle to other sensors commonly used in WSNs. This allows for less nodes deployed covering larger areas, saving money. In this report I implement a tracking WSN platform similar to what was developed by Lim, Wang, and Terzis. This consists of several sensor nodes each with a radar, a sink node connected to a host PC, and a Matlab© program to fuse sensor data. I have re-implemented their experiment with my WSN platform for tracking a non-cooperative target to verify their results and also run simulations to compare. The results of these tests are discussed and some future improvements are proposed.