932 resultados para weight exercise
Resumo:
[EN] 1. The present study examined whether the blood flow to exercising muscles becomes reduced when cardiac output and systemic vascular conductance decline with dehydration during prolonged exercise in the heat. A secondary aim was to determine whether the upward drift in oxygen consumption (VO2) during prolonged exercise is confined to the active muscles. 2. Seven euhydrated, endurance-trained cyclists performed two bicycle exercise trials in the heat (35 C; 40-50 % relative humidity; 61 +/- 2 % of maximal VO2), separated by 1 week. During the first trial (dehydration trial, DE), they bicycled until volitional exhaustion (135 +/- 4 min, mean +/- s.e.m.), while developing progressive dehydration and hyperthermia (3.9 +/- 0.3 % body weight loss; 39.7 +/- 0.2 C oesophageal temperature, Toes). In the second trial (control trial), they bicycled for the same period of time while maintaining euhydration by ingesting fluids and stabilizing Toes at 38.2 +/- 0.1 C after 30 min exercise. 3. In both trials, cardiac output, leg blood flow (LBF), vascular conductance and VO2 were similar after 20 min exercise. During the 20 min-exhaustion period of DE, cardiac output, LBF and systemic vascular conductance declined significantly (8-14 %; P < 0.05) yet muscle vascular conductance was unaltered. In contrast, during the same period of control, all these cardiovascular variables tended to increase. After 135 +/- 4 min of DE, the 2.0 +/- 0.6 l min-1 lower blood flow to the exercising legs accounted for approximately two-thirds of the reduction in cardiac output. Blood flow to the skin also declined markedly as forearm blood flow was 39 +/- 8 % (P < 0.05) lower in DE vs. control after 135 +/- 4 min. 4. In both trials, whole body VO2 and leg VO2 increased in parallel and were similar throughout exercise. The reduced leg blood flow in DE was accompanied by an even greater increase in femoral arterial-venous O2 (a-vO2) difference. 5. It is concluded that blood flow to the exercising muscles declines significantly with dehydration, due to a lowering in perfusion pressure and systemic blood flow rather than increased vasoconstriction. Furthermore, the progressive increase in oxygen consumption during exercise is confined to the exercising skeletal muscles.
Resumo:
Cardiac patients after an acute event and/or with chronic heart disease deserve special attention to restore their quality of life and to maintain or improve functional capacity. They require counselling to avoid recurrence through a combination of adherence to a medication plan and adoption of a healthy lifestyle. These secondary prevention targets are included in the overall goal of cardiac rehabilitation (CR). Cardiac rehabilitation can be viewed as the clinical application of preventive care by means of a professional multi-disciplinary integrated approach for comprehensive risk reduction and global long-term care of cardiac patients. The CR approach is delivered in tandem with a flexible follow-up strategy and easy access to a specialized team. To promote implementation of cardiac prevention and rehabilitation, the CR Section of the EACPR (European Association of Cardiovascular Prevention and Rehabilitation) has recently completed a Position Paper, entitled 'Secondary prevention through cardiac rehabilitation: A condition-oriented approach'. Components of multidisciplinary CR for seven clinical presentations have been addressed. Components include patient assessment, physical activity counselling, exercise training, diet/nutritional counselling, weight control management, lipid management, blood pressure monitoring, smoking cessation, and psychosocial management. Cardiac rehabilitation services are by definition multi-factorial and comprehensive, with physical activity counselling and exercise training as central components in all rehabilitation and preventive interventions. Many of the risk factor improvements occurring in CR can be mediated through exercise training programmes. This call-for-action paper presents the key components of a CR programme: physical activity counselling and exercise training. It summarizes current evidence-based best practice for the wide range of patient presentations of interest to the general cardiology community.
Resumo:
The optimal exercise modality for reductions of abdominal obesity and risk factors for type 2 diabetes in youth is unknown. We examined the effects of aerobic exercise (AE) versus resistance exercise (RE) without caloric restriction on abdominal adiposity, ectopic fat, and insulin sensitivity and secretion in youth. Forty-five obese adolescent boys were randomly assigned to one of three 3-month interventions: AE, RE, or a nonexercising control. Abdominal fat was assessed by magnetic resonance imaging, and intrahepatic lipid and intramyocellular lipid were assessed by proton magnetic resonance spectroscopy. Insulin sensitivity and secretion were evaluated by a 3-h hyperinsulinemic-euglycemic clamp and a 2-h hyperglycemic clamp. Both AE and RE prevented the significant weight gain that was observed in controls. Compared with controls, significant reductions in total and visceral fat and intrahepatic lipid were observed in both exercise groups. Compared with controls, a significant improvement in insulin sensitivity (27%) was observed in the RE group. Collapsed across groups, changes in visceral fat were associated with changes in intrahepatic lipid (r = 0.72) and insulin sensitivity (r = -0.47). Both AE and RE alone are effective for reducing abdominal fat and intrahepatic lipid in obese adolescent boys. RE but not AE is also associated with significant improvements in insulin sensitivity.
Resumo:
In view of the growing health problem associated with obesity, clarification of the regulation of energy homeostasis is important. Peripheral signals, such as ghrelin and leptin, have been shown to influence energy homeostasis. Nutrients and physical exercise, in turn, influence hormone levels. Data on the hormonal response to physical exercise (standardized negative energy balance) after high-fat (HF) or low-fat (LF) diet with identical carbohydrate intake are currently not available. The aim of the study was to investigate whether a short-term dietary intervention with HF and LF affects ghrelin and leptin levels and their modulators, GH, insulin and cortisol, before and during aerobic exercise. Eleven healthy, endurance-trained male athletes (W(max) 365 +/- 29 W) were investigated twice in a randomized crossover design following two types of diet: 1. LF - 0.5 g fat/kg body weight (BW) per day for 2.5 days; 2. HF - 0.5 g fat/kg BW per day for 1 day followed by 3.5 g fat/kg BW per day for 1.5 days. After a standardized carbohydrate snack in the morning, metabolites and hormones (GH, ghrelin, leptin, insulin and cortisol) were measured before and at regular intervals throughout a 3-h aerobic exercise test on a cycloergometer at 50% of W(max). Diet did not significantly affect GH and cortisol concentrations during exercise but resulted in a significant increase in ghrelin and decrease in leptin concentrations after LF compared with HF diet (area under the curve (AUC) ghrelin LF vs HF: P < 0.03; AUC leptin LF vs HF: P < 0.02, Wilcoxon rank test). These data suggest that acute negative energy balance induced by exercise elicits a hormonal response with opposite changes of ghrelin and leptin. In addition, the hormonal response is modulated by the preceding intake of fat.
Resumo:
BACKGROUND Intrahepatocellular (IHCL) and intramyocellular (IMCL) lipids are ectopic lipid stores. Aerobic exercise results in IMCL utilization in subjects over a broad range of exercise capacity. IMCL and IHCL have been related to impaired insulin action at the skeletal muscle and hepatic level, respectively. The acute effect of aerobic exercise on IHCL is unknown. Possible regulatory factors include exercise capacity, insulin sensitivity and fat availability subcutaneous and visceral fat mass). AIM To concomitantly investigate the effect of aerobic exercise on IHCL and IMCL in healthy subjects, using Magnetic Resonance spectroscopy. METHODS Normal weight, healthy subjects were included. Visit 1 consisted of a determination of VO2max on a treadmill. Visit 2 comprised the assessment of hepatic and peripheral insulin sensitivity by a two-step hyperinsulinaemic euglycaemic clamp. At Visit 3, subcutaneous and visceral fat mass were assessed by whole body MRI, IHCL and IMCL before and after a 2-hours aerobic exercise (50% of VO(2max)) using ¹H-MR-spectroscopy. RESULTS Eighteen volunteers (12M, 6F) were enrolled in the study (age, 37.6±3.2 years, mean±SEM; VO(2max), 53.4±2.9 mL/kg/min). Two hours aerobic exercise resulted in a significant decrease in IMCL (-22.6±3.3, % from baseline) and increase in IHCL (+34.9±7.6, % from baseline). There was no significant correlation between the exercise-induced changes in IMCL and IHCL and exercise capacity, subcutaneous and visceral fat mass and hepatic or peripheral insulin sensitivity. CONCLUSIONS IMCL and IHCL are flexible ectopic lipid stores that are acutely influenced by physical exercise, albeit in different directions. TRIAL REGISTRATION ClinicalTrial.gov NCT00491582.
Resumo:
It is unclear whether regular exercise alone (no caloric restriction) is a useful strategy to reduce adiposity and obesity-related metabolic risk factors in obese girls. We examined the effects of aerobic (AE) vs. resistance exercise (RE) alone on visceral adipose tissue (VAT), intrahepatic lipid, and insulin sensitivity in obese girls. Forty-four obese adolescent girls (BMI ≥95th percentile, 12-18 yr) with abdominal obesity (waist circumference 106.5 ± 11.1 cm) were randomized to 3 mo of 180 min/wk AE (n = 16) or RE (n = 16) or a nonexercising control group (n = 12). Total fat and VAT were assessed by MRI and intrahepatic lipid by proton magnetic resonance spectroscopy. Intermuscular AT (IMAT) was measured by CT. Insulin sensitivity was evaluated by a 3-h hyperinsulinemic (80 mU·m(2)·min(-1)) euglycemic clamp. Compared with controls (0.13 ± 1.10 kg), body weight did not change (P > 0.1) in the AE (-1.31 ± 1.43 kg) and RE (-0.31 ± 1.38 kg) groups. Despite the absence of weight loss, total body fat (%) and IMAT decreased (P < 0.05) in both exercise groups compared with control. Compared with control, significant (P < 0.05) reductions in VAT (Δ-15.68 ± 7.64 cm(2)) and intrahepatic lipid (Δ-1.70 ± 0.74%) and improvement in insulin sensitivity (Δ0.92 ± 0.27 mg·kg(-1)·min(-1) per μU/ml) were observed in the AE group but not the RE group. Improvements in insulin sensitivity in the AE group were associated with the reductions in total AT mass (r = -0.65, P = 0.02). In obese adolescent girls, AE but not RE is effective in reducing liver fat and visceral adiposity and improving insulin sensitivity independent of weight loss or calorie restriction.
Resumo:
BACKGROUND: Our objective was to analyze subjective explanations for unsuccessful weight loss among bariatric surgery candidates. METHODS: This was a retrospective analysis of 909 bariatric surgery candidates (78.2% female, average body mass index [BMI] 47.3) at a university center from 2001 to April 2007 who answered an open-ended question about why they were unable to lose weight. We generated a coding scheme for answers to the question and established inter-rater reliability of the coding process. Associations with demographic parameters and initial BMI were tested. RESULTS: The most common categories of answers were nonspecific explanations related to diet (25.3%), physical activity (21.0%), or motivation (19.7%), followed by diet-related motivation (12.7%) and medical conditions or medications affecting physical activity (12.7%). Categories related to time, financial cost, social support, physical environment, and knowledge occurred in less than 4% each. Men were more likely than women to cite a medical condition or medication affecting physical activity (19.2% vs 10.8%, P = 0.002, odds ratio [OR] = 1.96, 95% confidence interval [CI] = 1.28-2.99) but less likely to cite diet-related motivation (7.1% vs 14.2%, P = 0.008, OR = 0.46, 95% CI = 0.26-0.82). CONCLUSIONS: Our findings suggest that addressing diet, physical activity, and motivation in a comprehensive approach would meet the stated needs of obese patients. Raising patient awareness of under-recognized barriers to weight loss, such as the physical environment and lack of social support, should also be considered. Lastly, anticipating gender-specific attributions may facilitate tailoring of interventions.
Resumo:
To ascertain whether reactive oxygen species (ROS) contribute to training-induced adaptation of skeletal muscle, we administered ROS-scavenging antioxidants (AOX; 140 mg/l of ascorbic acid, 12 mg/l of coenzyme Q10 and 1% N-acetyl-cysteine) via drinking water to 16 C57BL/6 mice. Sixteen other mice received unadulterated tap water (CON). One cohort of both groups (CON(EXE) and AOX(EXE) ) was subjected to treadmill exercise for 4 weeks (16-26 m/min, incline of 5°-10°). The other two cohorts (CON(SED) and AOX(SED) ) remained sedentary. In skeletal muscles of the AOX(EXE) mice, GSSG and the expression levels of SOD-1 and PRDX-6 were significantly lower than those in the CON(EXE) mice after training, suggesting disturbance of ROS levels. The peak power related to the body weight and citrate synthase activity was not significantly influenced in mice receiving AOX. Supplementation with AOX significantly altered the mRNA levels of the exercise-sensitive genes HK-II, GLUT-4 and SREBF-1c and the regulator gene PGC-1alpha but not G6PDH, glycogenin, FABP-3, MCAD and CD36 in skeletal muscle. Although the administration of AOX during endurance exercise alters the expression of particular genes of the ROS metabolism, it does not influence peak power or generally shift the metabolism, but it modulates the expression of specific genes of the carbohydrate and lipid metabolism and PGC-1alpha within murine skeletal muscle.
Resumo:
Fasting dogs do transport vitamin A (VA) in plasma not only as retinol but predominantly as retinyl esters. Contrary to retinol, nothing is known concerning the effects of athletic performance on plasma retinyl ester concentrations. The aim of this study was therefore to examine whether physical stress because of exercise and modification of the oxidative stress by supplementation of alpha-tocopherol influences the concentrations of retinol and retinyl esters in plasma of sled dogs. The study was carried out on 41 trained adult sled dogs, which were randomly assigned into two groups. One group (19 dogs) was daily substituted with 50 mg dl-alpha-tocopheryl acetate per kilogram body weight and the control group (22 dogs) was maintained on a basal diet during 3 months prior to exercise. The plasma concentrations of retinol, retinyl esters, alpha-tocopherol and triglycerides were measured immediately before, directly after and 24 h after exercise. The supplementation of alpha-tocopheryl acetate had no effect on plasma retinol and retinyl ester concentrations at any measurement time point. However, retinyl ester levels doubled in the non-supplemented group immediately after the race (p < 0.001), whereas in the supplemented group similar high levels were observed not until 24 h post-racing (p < 0.001). The high levels of retinyl esters were paralleled to some extent by an increase in plasma triglyceride concentrations, which were significantly higher 24 h post-racing than immediately before (p < 0.001) and after exercise (p < 0.001) in both groups. The increase in retinyl ester concentrations might be indicative of their mobilization from liver and adipose tissue. Whether plasma retinyl esters can be used as an indicator for the extent of nutrient mobilization during and post-exercise in sled dogs remains to be elucidated.
Resumo:
It is estimated that more than half the U.S. adult population is overweight or obese as classified by a body mass index of 25.0–29.9 or ≥30 kg/m 2, respectively. Since the current treatment approaches for long-term maintenance of weight loss are lacking, the National Institutes of Health state that an effective approach may be to focus on weight gain prevention. There is a limited body of literature describing how adults maintain a stable weight as they age. It is hypothesized that weight stability is the result of a balance between energy consumption and energy expenditure as influenced by diet, lifestyle, behavior, genetics and environment. The purpose of this research was to examine the dietary intake and behaviors, lifestyle habits, and risk factors for weight change that predict weight stability in a cohort of 2101 men and 389 women aged 20 to 8 7 years in the Aerobic Center Longitudinal Study regardless of body weight at baseline. At baseline, participants completed a maximal exercise treadmill test to determine cardiorespiratory fitness, a medical history questionnaire, which included self-reported measures of weight, dietary behaviors, lifestyle habits, and risk factors for weight change, a three-day diet record, and a mail-back version of the medical history questionnaire in 1990 or 1995. All analyses were performed separately for men and women. Results from multivariate regression analyses indicated that the strongest predictor of follow-up weight for men and women was previous weight, accounting for 87.0% and 81.9% of the variance, respectively. Age, length of follow-up and eating habits were also significant predictors of follow-up weight in men, though these variables only explained 3% of the variance. For women, length of follow-up and currently being on a diet were significantly associated with follow-up weight but these variables explained only an additional 2% of the variance. Understanding the factors that influence weight change has tremendous public health importance for developing effective methods to prevent weight gain. Since current weight was the strongest predictor of previous weight, preventing initial weight gain by maintaining a stable weight may be the most effective method to combat the increasing prevalence of overweight and obesity. ^
Resumo:
Background. The increasing prevalence of overweight among youth in the United States, and the parallel rise in related medical comorbidities has led to a growing need for efficient weight-management interventions. Purpose. The aim of this study was to evaluate the effects of the Choosing Health and Sensible Exercise (C.H.A.S.E.) childhood obesity prevention program on Body Mass Index (BMI), physical activity and dietary behaviors. Methods. This study utilized de-identified data collected during the fall 2006 session of the C.H.A.S.E. program. A total of 65 students at Woodview Elementary School and Deepwater Elementary School participated in this intervention. The C.H.A.S.E. program is a 10-week obesity prevention program that focuses on nutrition and physical activity education. Collection of height and weight data, and a health behavior survey was conducted during the first and last week of the intervention. Paired t-tests were used to determine statistically significant differences between pre- and post-intervention measurements. One-way analysis of variance was used to adjust for potential confounders, such as gender, age, BMI category ("normal weight", "at risk overweight", or "overweight"), and self-reported weight loss goals. Data were analyzed using STATA, v. 9.2. Results. A significant decrease in mean BMI (p< 0.05) was found after the 10-week intervention. While the results were statistically significant for the group as a whole, changes in BMI were not significant when stratified by age, sex, or ethnicity. The mean overall scores for the behavior survey did not change significantly pre- and post-intervention; however, significant differences were found in the dietary intention scale, indicating that students were more likely to intend to make healthier food choices (p<0.05). No statistically significant decreases in BMI were found when stratified for baseline BMI-for-age percentiles or baseline weight loss efforts (p>0.05). Conclusion. The results of this evaluation provide information that will be useful in planning and implementing an effective childhood obesity intervention in the future. Changes in the self-reported dietary intentions and BMI show that the C.H.A.S.E. program is capable of modifying food choice selection and decreasing BMI. Results from the behavior questionnaire indicate that students in the intervention program were making changes in a positive direction. Future implementation of the C.H.A.S.E. program, as well as other childhood obesity interventions, may want to consider incorporating additional strategies to increase knowledge and other behavioral constructs associated with decreased BMI. In addition, obesity prevention programs may want to increase parental involvement and increase the dose or intensity of the intervention. ^
Resumo:
Introduction. The prevalence of overweight and obesity has increased sharply for both adults and children, particularity in disadvantaged populations. Changes in dietary habits are small; however applying behavior-change principles has been associated with weight loss and preventing weight gain. This article will review studies targeting economically disadvantaged and/or communities of color incorporating the Transtheoretical Model of Change (TTM).^ Methods. Inclusion criteria were established. Descriptions of characteristics of the reviewed study interventions are included.^ Results. The search yielded a total of 23 articles identified through the electronic database PubMed that included Transtheoretical Model of Change (TTM) interventions regarding diet and/or nutrition, physical activity and/or exercise in disadvantaged populations. Thirteen study interventions centered solely on diet modification, five focused only on physical activity, and five concentrated on a combination of both. The preponderance of studies targeted WIC and urban recipients.^ Discussion/Conclusion. Although the majority of intervention studies supported the use of the Transtheoretical Model of Change (TTM) for weight loss and preventing weight gain, researchers noted that challenges still exist and further interventions are needed.^
Resumo:
In industrialized countries the prevalence of obesity among women decreases with increasing socioeconomic status. While this relation has been amply documented, its explanation and implications for other causal factors of obesity has received much less attention. Differences in childbearing patterns, norms and attitudes about fatness, dietary behaviors and physical activity are some of the factors that have been proposed to explain the inverse relation.^ The objectives of this investigation were to (1) examine the associations among social characteristics and weight-related attitudes and behaviors, and (2) examine the relations of these factors to weight change and obesity. Information on social characteristics, weight-related attitudes, dietary behaviors, physical activity and childbearing were collected from 304 Mexican American women aged 19 to 50 living in Starr County, Texas, who were at high risk for developing diabetes. Their weights were recorded both at an initial physical examination and at a follow-up interview one to two and one-half years later, permitting the computation of current Body Mass Index (weight/height('2)) and weight change during the interval for each subject. Path analysis was used to examine direct and indirect relations among the variables.^ The major findings were: (1) After controlling for age, childbearing was not an independent predictor of weight change or Body Mass Index. (2) Neither planned exercise nor total daily physical activity were independent predictors of weight change. (3) Women with higher social characteristics scores reported less frequent meals and less use of calorically dense foods, factors associated with lower risk for weight gain. (4) Dietary intake measures were not significantly related to Body Mass Index. However, dietary behaviors (frequency of meals and snacks, use of high and low caloric density foods, eating restraint and disinhibition of restraint) did explain a significant portion (17.4 percent) of the variance in weight change, indicating the importance of using dynamic measures of weight status in studies of the development of obesity. This study highlights factors amenable to intervention to reverse or to prevent weight gain in this population, and thereby reduce the prevalence of diabetes and its sequelae. ^
Resumo:
BACKGROUND: This observational research study investigated the association of cardiorespiratory fitness and weight status with repeated measures of 24-hr ambulatory blood pressure (24-hr ABP). Little is known about these associations and few data exist examining the interaction between cardiorespiratory fitness and weight status and the contributions of each on 24-hr ABP in youth. ^ METHODS: This research study used secondary analysis data from the "Adolescent Blood Pressure and Anger: Ethnic Differences" study. This current study sample included 374 African-American, Anglo-American, and Mexican-American adolescents 11-16 years of age. Mixed-effects models were used for testing the relationship between weight status and cardiorespiratory fitness and repeated measures of ambulatory blood pressure over 24 hours (24-hr ABP). Weight status was categorized into "normal weight" (BMI<85th percentile), "overweight" (85th≤BMI<95th), and "obese" (BMI≥95th). Cardiorespiratory fitness, determined by heart rate recovery (HRR), was defined as the difference between heart rate at peak exercise and heart rate at two minutes post-exercise, as measured by a height-adjusted step test and stratified into two groups: low and high fitness, using a median split. Ambulatory blood pressure (ABP) was monitored for a 24-hr period on a school day using the Spacelabs ambulatory monitor (Model 90207). Blood pressure and heart rate were recorded at 30 minute intervals throughout the day of recording and at 60 minute intervals during sleep. ^ RESULTS: No significant associations were found between weight status and mean 24-hr systolic blood pressure (SBP) or mean arterial pressure (MAP). A significant and inverse association between weight status and mean 24-hr diastolic blood pressure (DBP) was revealed. Cardiorespiratory fitness was significantly and inversely associated with mean 24-hr ABP. High fitness adolescents had significantly lower mean 24-hr SPB, DBP, and MAP measurements than low fitness adolescents. Compared to low fitness adolescents, high fitness adolescents had 1.90 mmHg, 1.16 mmHg, and 1.68 mmHg lower mean 24-hr SBP, DBP, and MAP, respectively. Additionally, high fitness appeared to afford protection from higher mean 24-hr SBP and MAP, irrespective of weight status. Among normal weight adolescents, low fitness resulted in higher mean 24-hr SBP and MAP, compared to their fit counterparts. Among adolescents categorized as high fitness, increasing weight status did not appear to result in higher mean 24-hr SBP or MAP. Cardiorespiratory fitness, rather than weight status, appeared to be a more dominant predictor of mean 24-hr SBP and MAP. ^ CONCLUSIONS: To our knowledge, this research is the first study to investigate the independent and combined contributions of cardiorespiratory fitness and weight status on 24-hr ABP, all objectively measured. The results of this study may potentially guide and inform future research. It appears that early cardiovascular disease (CVD) prevention should focus on improving cardiorespiratory fitness levels among all adolescents, particularly those adolescents least fit, regardless of their weight status, while obesity prevention efforts continue.^
Resumo:
Introduction. Most studies have described how the weight loss is when different treatments are compared (1-3), while others have also compared the weight loss by sex (4), or have taken into account psychosocial (5) and lifestyle (6, 7) variables. However, no studies have examined the interaction of different variables and the importance of them in the weight loss. Objective. Create a model to discriminate the range of weight loss, determining the importance of each variable. Methods. 89 overweight people (BMI: 25-29.9 kg?m-2), aged from 18 to 50 years, participated in the study. Four types of treatments were randomly assigned: strength training (S), endurance training (E), strength and endurance training (SE), and control group (C). All participants followed a 25% calorie restriction diet. Two multivariate discriminant models including the variables age, sex, height, daily energy expenditure (EE), type of treatment (T), caloric restriction (CR), initial body weight (BW), initial fat mass (FM), initial muscle mass (MM) and initial bone mineral density (BMD) were performed having into account two groups: the first and fourth quartile of the % of weight loss in the first model; the groups above and below the mean of the % of weight loss in the second model. The discriminant models were built using the inclusion method in SPSS allowing us to find a function that could predict the body weight loss range that an overweight person could achieve in a 6 months weight loss intervention.Results. The first discriminant analysis predicted that a combination of the studied variables would discriminate between the two ranges of body weight loss with 81.4% of correct classification. The discriminant function obtained was (Wilks? Lambda=0.475, p=0.003): Discriminant score=-18.266-(0.060xage)- (1.282xsex[0=female;1=male])+(14.701xheight)+(0.002xEE)- (0.006xT[1=S;2=E;3=SE;4=C])-(0.047xCR)- (0.558xBW)+(0.475xFM)+(0.398xMM)+(3.499xBMD) The second discriminant model obtained would discriminate between the two groups of body weight loss with 74.4% of correct classification. The discriminant function obtained was (Wilks? Lambda=0.725, p=0.005): Discriminant score=-5.021-(0.052xage)- (0.543xsex[0=female;1=male])+(3.530xheight)+(0.001xEE)- (0.493xT[1=S;2=E;3=SE;4=C])+(0.003xCR)- (0.365xBW)+(0.368xFM)+(0.296xMM)+(4.034xBMD) Conclusion. The first developed model could predict the percentage of weight loss in the following way: if the discriminant score is close to 1.051, the range of weight loss will be from 7.44 to -4.64% and if it is close to - 1.003, the range will be from -11.03 to -25,00% of the initial body weight. With the second model if the discriminant score is close to 0.623 the body weight loss will be above -7.93% and if it is close to -0.595 will be below - 7.93% of the initial body weight. References. 1. Brochu M, et al. Resistance training does not contribute to improving the metabolic profile after a 6-month weight loss program in overweight and obese postmenopausal women. J Clin Endocrinol Metab. 2009 Sep;94(9):3226-33. 2. Del Corral P, et al. Effect of dietary adherence with or without exercise on weight loss: a mechanistic approach to a global problem. J Clin Endocrinol Metab. 2009 May;94(5):1602-7. 3. Larson-Meyer DE, et al. Caloric Restriction with or without Exercise: The Fitness vs. Fatness Debate. Med Sci Sports Exerc. 2010;42(1):152-9. 4. Hagan RD, et al. The effects of aerobic conditioning and/or caloric restriction in overweight men and women. Medicine & Science in Sports & Exercise. 1986;18(1):87-94. 5. Teixeira PJ, et al. Mediators of weight loss and weight loss maintenance in middle-aged women. Obesity (Silver Spring). 2010 Apr;18(4):725-35. 6. Bautista-Castano I, et al. Variables predictive of adherence to diet and physical activity recommendations in the treatment of obesity and overweight, in a group of Spanish subjects. Int J Obes Relat Metab Disord. 2004 May;28(5):697-705.