998 resultados para water-dependent ecosystem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lakes are an important component of ecosystem carbon cycle through both organic carbon sequestration and carbon dioxide and methane emissions, although they cover only a small fraction of the Earth's surface area. Lake sediments are considered to be one of rather perma-nent sinks of carbon in boreal regions and furthermore, freshwater ecosystems process large amounts of carbon originating from terrestrial sources. These carbon fluxes are highly uncer-tain especially in the changing climate. -- The present study provides a large-scale view on carbon sources and fluxes in boreal lakes situated in different landscapes. We present carbon concentrations in water, pools in lake se-diments, and carbon gas (CO2 and CH4) fluxes from lakes. The study is based on spatially extensive and randomly selected Nordic Lake Survey (NLS) database with 874 lakes. The large database allows the identification of the various factors (lake size, climate, and catchment land use) determining lake water carbon concentrations, pools and gas fluxes in different types of lakes along a latitudinal gradient from 60oN to 69oN. Lakes in different landscapes vary in their carbon quantity and quality. Carbon (C) content (total organic and inorganic carbon) in lakes is highest in agriculture and peatland dominated areas. In peatland rich areas organic carbon dominated in lakes but in agricultural areas both organic and inorganic C concentrations were high. Total inorganic carbon in the lake water was strongly dependent on the bedrock and soil quality in the catchment, especially in areas where human influence in the catchment is low. In inhabited areas both agriculture and habitation in the catchment increase lake TIC concentrations, since in the disturbed soils both weathering and leaching are presumably more efficient than in pristine areas. TOC concentrations in lakes were related to either catchment sources, mainly peatlands, or to retention in the upper watercourses. Retention as a regulator of the TOC concentrations dominated in southern Finland, whereas the peatland sources were important in northern Finland. The homogeneous land use in the north and the restricted catchment sources of TOC contribute to the close relationship between peatlands and the TOC concentrations in the northern lakes. In southern Finland the more favorable climate for degradation and the multiple sources of TOC in the mixed land use highlight the importance of retention. Carbon processing was intensive in the small lakes. Both CO2 emission and the Holocene C pool in sediments per square meter of the lake area were highest in the smallest lakes. How-ever, because the total area of the small lakes on the areal level is limited, the large lakes are important units in C processing in the landscape. Both CO2 and CH4 concentrations and emissions were high in eutrophic lakes. High availability of nutrients and the fresh organic matter enhance degradation in these lakes. Eutrophic lakes are often small and shallow, enabling high contact between the water column and the sediment. At the landscape level, the lakes in agricultural areas are often eutrophic due to fertile soils and fertilization of the catchments, and therefore they also showed the highest CO2 and CH4 concentrations. Export from the catchments and in-lake degradation were suggested to be equally important sources of CO2 and CH4 in fall when the lake water column was intensively mixed and the transport of sub-stances from the catchment was high due to the rainy season. In the stagnant periods, especially in the winter, in-lake degradation as a gas source was highlighted due to minimal mixing and limited transport of C from the catchment. The strong relationship between the annual CO2 level of lakes and the annual precipitation suggests that climate change can have a major impact on C cycling in the catchments. Increase in precipitation enhances DOC export from the catchments and leads to increasing greenhouse gas emissions from lakes. The total annual CO2 emission from Finnish lakes was estimated to be 1400 Gg C a-1. The total lake sediment C pool in Finland was estimated to be 0.62 Pg, giving an annual sink in Finnish lakes of 65 Gg C a-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment resuspension, the return of the bottom material into the water column, is an important process that can have various effects on a lake ecosystem. Resuspension caused by wind-induced wave disturbance, currents, turbulent fluctuations and bioturbation affects water quality characteristics such as turbidity, light conditions, and concentrations of suspended solids (SS) and nutrients. Resuspension-mediated increase in turbidity may favour the dominance of phytoplankton over macrophytes. The predator-prey interactions contributing to the trophic state of a lake may also be influenced by increasing turbidity. Directly, the trophic state of a lake can be influenced by the effect of sediment resuspension on nutrient cycling. Resuspension enhances especially the cycling of phosphorus by bringing the sedimentary nutrients back into the water column and may thereby induce switches between phosphorus and nitrogen limitation. The contribution of sediment resuspension to gross sedimentation, turbidity, and concentration of SS and nutrients was studied in a small, deep lake as well as in a multibasin lake with deep and shallow areas. The effect of ice cover on sediment resuspension and thereby on phosphorus concentrations was also studied. The rates of gross sedimentation and resuspen¬sion were estimated with sediment traps and the associations between SS and nutrients were considered. Sediment resuspension, caused by wind activity, comprised most of the gross sedimenta¬tion and strongly contributed to the concentration of SS and turbidity in the lakes studied. Additionally, via the influence on SS, resuspension affected the concentration of total phosphorus (TP) and soluble reactive phosphorus (SRP), as well as the total nitrogen to total phosphorus (TN:TP) ratio. Although contrasting results concerning the dependence between the SS and SRP concentrations were observed, it could be concluded that sediment resuspension during strong algal blooms (pH > 9) led to aerobic release of P. The main findings of this thesis were that in the course of the growing season, sediment resuspension coupled with phytoplankton succession led to liberation of P from resuspended particles, which in turn resulted in high TP concentrations and low TN:TP ratios. This development was likely a cause of strong cyanobacterial blooms in midsummer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coal seam gas production has resulted in the production of large volumes of associated water which contains dissolved salts dominated by sodium chloride and sodium bicarbonate. Ion exchange using synthetic resins has been proposed as a method for desalination of coal seam water to make it suitable for various beneficial reuse options. This study investigated the behaviour of solutions of sodium chloride and sodium bicarbonate with respect to exchange with Lanxess S108H strong acid cation (SAC) resin. Equilibrium isotherms were created for solutions of NaCl and NaHCO3 and an actual sample of coal seam water from the Surat Basin in southern Queensland. The exchange of sodium ions arising from sodium bicarbonate was found to be considerably more favourable than exchange of sodium ions from sodium chloride solutions. This latter behaviour was attributed to the secondary decomposition of bicarbonate species under acidic conditions which resulted in the evolution of carbon dioxide and formation of water. The isotherm profiles could not be satisfactorily fitted by a single isotherm model such as the Langmuir expression. Instead, two Langmuir equations had to be simultaneously applied in order to fit the sections of the isotherm attributable to sodium ion exchange from sodium bicarbonate and sodium chloride. The shape of the isotherm profile was dependent upon the ratio of sodium chloride to sodium bicarbonate in solution and there was a high degree of correlation between simulated and actual coal seam water solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the old C (peat) sequestered under prior anoxic conditions. Responses of the new C (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the new C by measuring the relative importance of 1) environmental parameters (WL depth, temperature, soil chemistry) and 2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transmission electron microscopy images of in situ prepared multiwall carbon nanotubes (MWNTs)and polyaniline (PANI) composites show that nanotubes are well dispersed in aqueous medium, and the nanofibers of PANI facilitate intertube transport. Although low temperature transport indicates variable range hopping (VRH) mechanism, the dc and ac conductivity become temperature independent as the MWNT content increases. The onset frequency for the increase in conductivity is observed to be strongly dependent on the MWNT weight percent, and the ac conductivity can be scaled onto a master curve. The negative magnetoresistance is attributed to the forward interference scattering mechanism in VRH transport. (C) 2010 American.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuing urbanization is a crucial driver of land transformation, having widespread impacts on virtually all ecosystems. Terrestrial ecosystems, including disturbed ones, are dependent on soils, which provide a multitude of ecosystem services. As soils are always directly and/or indirectly impacted through land transformation, land cover change causes soil change. Knowledge of ecosystem properties and functions in soils is increasing in importance as humans continue to concentrate into already densely-populated areas. Urban soils often have hampered functioning due to various disturbances resulting from human activity. Innovative solutions are needed to bring the lacking ecosystem services and quality of life to these urban environments. For instance, the ecosystem services of the urban green infrastructure may be substantially improved through knowledge of their functional properties. In the research forming this thesis, the impacts of four plant species (Picea abies, Calluna vulgaris, Lotus corniculatus and Holcus lanatus) on belowground biota and regulatory ecosystem services were investigated in two different urban soil types. The retention of inorganic nitrogen and phosphorus in the plant-soil system, decomposition of plant litter, primary production, and the degradation of polycyclic aromatic hydrocarbons (PAHs) were examined in the field and under laboratory conditions. The main objective of the research was to determine whether the different plant species (representing traits with varying litter decomposability) will give rise to dissimilar urban belowground communities with differing ecological functions. Microbial activity as well as the abundance of nematodes and enchytraeid worm biomass was highest below the legume L. corniculatus. L. corniculatus and the grass H. lanatus, producing labile or intermediate quality litter, enhanced the proportion of bacteria in the soil rhizosphere, while the recalcitrant litter-producing shrub C. vulgaris and the conifer P. abies stimulated the growth of fungi. The loss of nitrogen from the plant-soil system was small for H. lanatus and the combination of C. vulgaris + P. abies, irrespective of their energy channel composition. These presumably nitrogen-conservative plant species effectively diminished the leaching losses from the plant-soil systems with all the plant traits present. The laboratory experiment revealed a difference in N allocation between the plant traits: C. vulgaris and P. abies sequestered significantly more N in aboveground shoots in comparison to L. corniculatus and H. Lanatus. Plant rhizosphere effects were less clear for phosphorus retention, litter decomposition and the degradation of PAH compounds. This may be due to the relatively short experimental durations, as the maturation of the plant-soil system is likely to take a considerably longer time. The empirical studies of this thesis demonstrated that the soil communities rapidly reflect changes in plant coverage, and this has consequences for the functionality of soils. The energy channel composition of soils can be manipulated through plants, which was also supported by the results of the separate meta-analysis conducted in this thesis. However, further research is needed to understand the linkages between the biological community properties and ecosystem services in strongly human-modified systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New chemical entities with unfavorable water solubility properties are continuously emerging in drug discovery. Without pharmaceutical manipulations inefficient concentrations of these drugs in the systemic circulation are probable. Typically, in order to be absorbed from the gastrointestinal tract, the drug has to be dissolved. Several methods have been developed to improve the dissolution of poorly soluble drugs. In this study, the applicability of different types of mesoporous (pore diameters between 2 and 50 nm) silicon- and silica-based materials as pharmaceutical carriers for poorly water soluble drugs was evaluated. Thermally oxidized and carbonized mesoporous silicon materials, ordered mesoporous silicas MCM-41 and SBA-15, and non-treated mesoporous silicon and silica gel were assessed in the experiments. The characteristic properties of these materials are the narrow pore diameters and the large surface areas up to over 900 m²/g. Loading of poorly water soluble drugs into these pores restricts their crystallization, and thus, improves drug dissolution from the materials as compared to the bulk drug molecules. In addition, the wide surface area provides possibilities for interactions between the loaded substance and the carrier particle, allowing the stabilization of the system. Ibuprofen, indomethacin and furosemide were selected as poorly soluble model drugs in this study. Their solubilities are strongly pH-dependent and the poorest (< 100 µg/ml) at low pH values. The pharmaceutical performance of the studied materials was evaluated by several methods. In this work, drug loading was performed successfully using rotavapor and fluid bed equipment in a larger scale and in a more efficient manner than with the commonly used immersion methods. It was shown that several carrier particle properties, in particular the pore diameter, affect the loading efficiency (typically ~25-40 w-%) and the release rate of the drug from the mesoporous carriers. A wide pore diameter provided easier loading and faster release of the drug. The ordering and length of the pores also affected the efficiency of the drug diffusion. However, these properties can also compensate the effects of each other. The surface treatment of porous silicon was important in stabilizing the system, as the non-treated mesoporous silicon was easily oxidized at room temperature. Different surface chemical treatments changed the hydrophilicity of the porous silicon materials and also the potential interactions between the loaded drug and the particle, which further affected the drug release properties. In all of the studies, it was demonstrated that loading into mesoporous silicon and silica materials improved the dissolution of the poorly soluble drugs as compared to the corresponding bulk compounds (e.g. after 30 min ~2-7 times more drug was dissolved depending on the materials). The release profile of the loaded substances remained similar also after 3 months of storage at 30°C/56% RH. The thermally carbonized mesoporous silicon did not compromise the Caco-2 monolayer integrity in the permeation studies and improved drug permeability was observed. The loaded mesoporous silica materials were also successfully compressed into tablets without compromising their characteristic structural and drug releasing properties. The results of this research indicated that mesoporous silicon/silica-based materials are promising materials to improve the dissolution of poorly water soluble drugs. Their feasibility in pharmaceutical laboratory scale processes was also confirmed in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Cambodia, water has a special purpose as a source of life and livelihoods. Along with agriculture, fishing and forest use, industry, hydropower, navigation and tourism compete for the water resources. When rights and responsibilities related to essential and movable water are unclear, conflicts emerge easily. Therefore, water management is needed in order to plan and control the use of water resources. The international context is characterized by the Mekong River that flows through six countries. All of the countries by the river have very different roles and interests already depending on their geographical location. At the same time, water is also a tool for cooperation and peace. Locally, the water resources and related livelihoods create base for well-being, for economical and human resources in particular. They in turn are essential for the local people to participate and defend their rights to water use. They also help to construct the resource base of the state administration. Cambodia is highly dependent on the Mekong River. However, Cambodia has a volatile history whose effects can be seen for example in population structure, once suspended public institutions and weakened trust in the society. Relatively stable conditions came to the country as late as in the 1990s, therefore Cambodia for example has a weak status within the Mekong countries. This Master s thesis forms international, national and local interest groups of water use and analyzes their power relations and resources to affect water management. The state is seen as the salient actor as it has the formal responsibility of the water resources and of the coordination between the actions of different levels. In terms of water use this study focuses on production, in management on planning and in power relations on the resources. Water resources of Cambodia are seen consisting of the Mekong River and Tonle Sap Lake and the time span of the study is between the years 1991 and 2006. The material consists of semi-structured interviews collected during summer 2006 in Finland and in Cambodia as well as of literature and earlier studies. The results of the study show that the central state has difficulties to coordinate the actions of different actors because of its resource deficit and internal conflicts. The lessons of history and the vested interests of the actors of the state make it difficult to plan and to strengthen legislation. It seems that the most needed resources at the central state level are intangible as at the village level instead, the tangible resources (fulfilling the basic needs) are primarily important. The local decision-making bodies, NGOs and private sector mainly require legislation and legitimacy to support their role. However, the civil society and the international supporters are active and there are possibilities for new cooperation networks. Keywords: Water management, resources, participation, Cambodia, Mekong

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of temperature-dependent viscosity and Prandtl number on the unsteady laminar nonsimilar forced convection flow over two-dimensional and axisymmetric bodies has been examined where the unsteadiness and (or) nonsimilarity are (is) due to the free stream velocity, mass transfer, and transverse curvature. The partial differential equations governing the flow which involve three independent variables have been solved numerically using an implicit finite-difference scheme along with a quasilinearization technique. It is found that both the skin friction and heat transfer strongly respond to the unsteady free stream velocity distributions. The unsteadiness and injection cause the location of zero skin friction to move upstream. However, the effect of variable viscosity and Prandtl number is to move it downstream. The heat transfer is found to depend strongly on viscous dissipation, but the skin friction is little affected by it. In general, the results pertaining to variable fluid properties differ significantly, from those of constant fluid properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exact free surface flows with shear in a compressible barotropic medium are found, extending the authors' earlier work for the incompressible medium. The barotropic medium is of finite extent in the vertical direction, while it is infinite in the horizontal direction. The ''shallow water'' equations for a compressible barotropic medium, subject to boundary conditions at the free surface and at the bottom, are solved in terms of double psi-series, Simple wave and time-dependent solutions are found; for the former the free surface is of arbitrary shape while for the latter it is a damping traveling wave in the horizontal direction, For other types of solutions, the height of the free surface is constant either on lines of constant acceleration or on lines of constant speed. In the case of an isothermal medium, when gamma = 1, we again find simple wave and time-dependent solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have synthesised and determined the solution conformation and X-ray crystal structure of the octapeptide Ac-Delta Phe(1)-Val(2)-Delta Phe(3)-Phe(4)-Ala(5)-Val(6)-Delta Phe(7)-Gly(8)-OCH3 (Delta Phe = alpha,beta-dehydrophenylalanine) containing three Delta Phe residues as conformation constraining residues. In the solid state, the peptide folds into (i) an N-terminal (3)10(R)-helical pentapeptide segment, (ii) a middle non-helical segment, and (iii) a C-terminal incipient (3)10(L)-helical segment. The results of H-1 NMR data also suggest that a similar multiple-turn conformation for the peptide is largely maintained in solution. Though the C-terminal helix is incipient, the overall conformation of the octapeptide matches well with the conformation of the hairpins reported. Comparison of the pi-turn seen in the octapeptide molecule with those observed in proteins at the C-terminal end of helixes shows the structural similarity among them. A water molecule mediates the 5 --> 2 hydrogen bond in the pi-turn region. This is the first example of a water-inserted pi-turn in oligopeptides reported so far. Comparison between the present octapeptide and another (3)10(R)-helical dehydro nonapeptide Boc-Val-Delta Phe-Phe-Ala-Phe-Delta Phe-Val-Delta Phe-Gly-OCH3 solved by us recently, demonstrates the possible sequence-dependent conformational variations in alpha,beta-dehydrophenylalanine-containing oligopeptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study reports the first indication of a lyotropic liquid crystalline phase of an aqueous solution of polysaccharide xanthan gum, as a physical parameter dependent scalable and reversible weak alignment medium, for enantiodiscrimination of water soluble chiral molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conservation of natural resources through sustainable ecosystem management and development is the key to our secured future. The management of ecosystem involves inventorying and monitoring, and applying integrated technologies, methodologies and interdisciplinary approaches for its conservation. Hence, now it is even more critical than ever before for the humans to be environmentally literate. To realise this vision, both ecological and environmental education must become a fundamental part of the education system at all levels of education. Currently, it is even more critical than ever before for the humankind as a whole to have a clear understanding of environmental concerns and to follow sustainable development practices. The degradation of our environment is linked to continuing problems of pollution, loss of forest, solid waste disposal, and issues related to economic productivity and national as well as ecological security. Environmental management has gained momentum in the recent years with the initiatives focussing on managing environmental hazards and preventing possible disasters. Environmental issues make better sense, when one can understand them in the context of one’s own cognitive sphere. Environmental education focusing on real-world contexts and issues often begins close to home, encouraging learners to understand and forge connections with their immediate surroundings. The awareness, knowledge, and skills needed for these local connections and understandings provide a base for moving out into larger systems, broader issues, and a more sophisticated comprehension of causes, connections, and consequences. Environmental Education Programme at CES in collaboration with Karnataka Environment Research Foundation (KERF) referred as ‘Know your Ecosystem’ focuses on the importance of investigating the ecosystems within the context of human influences, incorporating an examination of ecology, economics, culture, political structure, and social equity as well as natural processes and systems. The ultimate goal of environment education is to develop an environmentally literate public. It needs to address the connection between our conception and practice of education and our relationship as human cultures to life-sustaining ecological systems. For each environmental issue there are many perspectives and much uncertainty. Environmental education cultivates the ability to recognise uncertainty, envision alternative scenarios, and adapt to changing conditions and information. These knowledge, skills, and mindset translate into a citizenry who is better equipped to address its common problems and take advantage of opportunities, whether environmental concerns are involved or not.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Indian subcontinent divides the north Indian Ocean into two tropical basins, namely the Arabian Sea and the Bay of Bengal. The Arabian Sea has high salinity whereas the salinity of the Bay of Bengal is much lower due to the contrast in freshwater forcing of the two basins. The freshwater received by the Bay in large amounts during the summer monsoon through river discharge is flushed out annually by ocean circulation. After the withdrawal of the summer monsoon, the Ganga – Brahmaputra river plume flows first along the Indian coast and then around Sri Lanka into the Arabian Sea creating a low salinity pool in the southeastern Arabian Sea (SEAS). In the same region, during the pre-monsoon months of February – April, a warm pool, known as the Arabian Sea Mini Warm Pool (ASMWP), which is distinctly warmer than the rest of the Indian Ocean, takes shape. In fact, this is the warmest region in the world oceans during this period. Simulation of the river plume and its movement as well as its implications to thermodynamics has been a challenging problem for models of Indian Ocean. Here we address these issues using an ocean general circulation model – first we show that the model is capable of reproducing fresh plumes in the Bay of Bengal as well as its movement and then we use the model to determine the processes that lead to formation of the ASMWP. Hydrographic observations from the western Bay of Bengal have shown the presence of a fresh plume along the northern part of the Indian coast during summer monsoon. The Indian Ocean model when forced by realistic winds and climatological river discharge reproduces the fresh plume with reasonable accuracy. The fresh plume does not advect along the Indian coast until the end of summer monsoon. The North Bay Monsoon Current, which flows eastward in the northern Bay, separates the low salinity water from the more saline southern parts of the bay and thus plays an important role in the fresh water budget of the Bay of Bengal. The model also reproduces the surge of the fresh-plume along the Indian coast, into the Arabian Sea during northeast monsoon. Mechanisms that lead to the formation of the Arabian Sea Mini Warm Pool are investigated using several numerical experiments. Contrary to the existing theories, we find that salinity effects are not necessary for the formation of the ASMWP. The orographic effects of the Sahyadris (Western Ghats) and resulting reduction in wind speed leads to the formation of the ASMWP. During November – April, the SEAS behave as a low-wind heatdominated regime where the evolution of sea surface temperature is solely determined by atmospheric forcing. In such regions the evolution of surface layer temperature is not dependent on the characteristics of the subsurface ocean such as the barrier layer and temperature inversion.