910 resultados para volume of fluid method
Resumo:
Natural cilia are hairlike microtubule-based structures that are able to move fluid on the micrometer scale using asymmetric motion. In this article, we follow a biomimetic approach to design artificial cilia lining the inner surfaces of microfluidic channels with the goal of propelling fluid. The artificial cilia consist of polymer films filled with superparamagnetic nanoparticles, which can mimic the motion of natural cilia when subjected to a rotating magnetic field. To obtain the magnetic field and associated magnetization local to the cilia, we solve the Maxwell equations, from which the magnetic body moments and forces can be deduced. To obtain the ciliary motion, we solve the dynamic equations of motion, which are then fully coupled to the Navier-Stokes equations that describe the fluid flow around the cilia, thus taking full account of fluid inertial forces. The dimensionless parameters that govern the deformation behavior of the cilia and the associated fluid flow are arrived at using the principle of virtual work. The physical response of the cilia and the fluid flow for different combinations of elastic, fluid viscous, and inertia forces are identified.
Resumo:
The use of high viscous pore fluid has been widely established to match the rate of excess pore pressure generation and subsequent dissipation in dynamic centrifuge tests. The appropriate viscosity is linked to the geometric and gravity scaling factors which corresponds to the use of pore fluid of 'N' cSt in a 'N'g centrifuge test. The use of either water (1 cSt) or pore fluid lower than 'N' cSt can influence the behaviour of soil liquefaction in a centrifuge test. In this paper, the floatation of a tunnel following soil liquefaction is investigated using pore fluids with two different viscosities. The results show that the uplift displacement of the tunnel is significantly affected by the pore fluid viscosity. © 2010 Taylor & Francis Group, London.
Resumo:
Background: There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. Aim. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. Methods. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). Results: The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. Conclusions: A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection. © 2011 Jun et al.
Resumo:
Decision-making at the front-end of innovation is critical for the success of companies. This paper presents a simple visual method, called DMCA (Decision-Making Criteria Assessment), which was created to clarify and improve decision-making at the front-end of innovation. The method maps the uncertainty of project information and importance of decision criteria, compiling a measure that indicates whether the decision is highly uncertain, what information interferes with it, and what criteria are actually being considered. The DMCA method was tested in two projects that faced decision-making issues, and the results confirm the benefits of using this method in decision-making at the front-end. © 2012 IEEE.
Resumo:
A collection of 577 Coilia mystus was made during April 2006 and 2007 from China's Yangtze Estuary to estimate the age structure and growth patterns of the population. Examination of sectioned sagittal otoliths revealed a periodic straight/curved growth pattern. The straight zone was from April to November, and the curved zone from October to May, indicating annual periodicity. Annual periodicity was also verified by margin zone analysis. The shift from a curved-zone to the next straight-zone stanza was defined as an annulus. The fish from which the otoliths were taken were 0-5 years old. The von Bertalanffy growth function was fitted to standard length (LS)-at-age data as L-S = 215.16 (1 - e(-0.53(t+0.30))) (n = 577, r(2) = 0.81, p < 0.05). The mature females included five age classes, ages 1 and 2 accounting for 74.3% of the population. The mature males included fish aged 1 and 2, those at age 1 accounting for 86.4% of the population. Mean length was smaller, and annual growth less, for mature males than for females of comparable age. The study demonstrated that the Yangtze population of C. mystus consists of more age classes than previously thought and that the age structure of the population needs to be considered in management decisions.
Resumo:
In the fluid simulation, the fluids and their surroundings may greatly change properties such as shape and temperature simultaneously, and different surroundings would characterize different interactions, which would change the shape and motion of the fluids in different ways. On the other hand, interactions among fluid mixtures of different kinds would generate more comprehensive behavior. To investigate the interaction behavior in physically based simulation of fluids, it is of importance to build physically correct models to represent the varying interactions between fluids and the environments, as well as interactions among the mixtures. In this paper, we will make a simple review of the interactions, and focus on those most interesting to us, and model them with various physical solutions. In particular, more detail will be given on the simulation of miscible and immiscible binary mixtures. In some of the methods, it is advantageous to be taken with the graphics processing unit (GPU) to achieve real-time computation for middle-scale simulation.
Resumo:
In this paper, the codes of Pattern Informatics (PI) method put forward by Rundle et al. have been worked out according to their algorithm published, and the retrospective forecast of PI method to North China (28.0 degrees-42.0 degrees N, 108.0 degrees-125.0 degrees E) and to Southwest China (22.0 degrees-28.3 degrees N, 98.0 degrees-106.0 degrees E) has been tested. The results show that the hit rates in different regions show a great difference. In Southwest China, 32 earthquakes with M(L)5.0 or larger have occurred during the predicted time period 2000-2007, and 26 out of the 32 earthquakes occurred in or near the hot spots. In North China, the total number of M(L)5.0 or larger was 12 during the predicted time period 2000-2007, and only 3 out of the 12 earthquakes occurred in or near the hot spots. From our results, we hold that if the PI method could be applied to all kinds of regions, the parameters associated with time points and time windows should be chosen carefully to obtain the higher hit rate. We also found that the aftershocks in a strong earthquake sequence affect the PI results obviously. Copyright (c) 2009 John Wiley & Sons, Ltd.
Resumo:
In this paper, the codes of Pattern Informatics (PI) method put forward by Rundle et al. have been worked out according to their algorithm published, and the retrospective forecast of PI method to North China (28.0 degrees-42.0 degrees N, 108.0 degrees-125.0 degrees E) and to Southwest China (22.0 degrees-28.3 degrees N, 98.0 degrees-106.0 degrees E) has been tested. The results show that the hit rates in different regions show a great difference. In Southwest China, 32 earthquakes with M(L)5.0 or larger have occurred during the predicted time period 2000-2007, and 26 out of the 32 earthquakes occurred in or near the hot spots. In North China, the total number of M(L)5.0 or larger was 12 during the predicted time period 2000-2007, and only 3 out of the 12 earthquakes occurred in or near the hot spots. From our results, we hold that if the PI method could be applied to all kinds of regions, the parameters associated with time points and time windows should be chosen carefully to obtain the higher hit rate. We also found that the aftershocks in a strong earthquake sequence affect the PI results obviously. Copyright (c) 2009 John Wiley & Sons, Ltd.