991 resultados para visual motion
Resumo:
Early visual processing analyses fine and coarse image features separately. Here we show that motion signals derived from fine and coarse analyses are combined in rather a surprising way: Coarse and fine motion sensors representing the same direction of motion inhibit one another and an imbalance can reverse the motion perceived. Observers judged the direction of motion of patches of filtered two-dimensional noise, centered on 1 and 3 cycles/deg. When both sets of noise were present and only the 3 cycles/deg noise moved, judgments were reversed at short durations. When both sets of noise moved, judgments were correct but sensitivity was impaired. Reversals and impairments occurred both with isotropic noise and with orientation-filtered noise. The reversals and impairments could be simulated in a model of motion sensing by adding a stage in which the outputs of motion sensors tuned to 1 and 3 cycles/deg and the same direction of motion were subtracted from one another. The subtraction model predicted and we confirmed in experiments with orientation-filtered noise that if the 1 cycle/deg noise flickered and the 3 cycles/deg noise moved, the 1 cycle/deg noise appeared to move in the opposite direction to the 3 cycles/deg noise even at long durations.
Resumo:
Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.
Resumo:
This paper presents a new dynamic visual control system for redundant robots with chaos compensation. In order to implement the visual servoing system, a new architecture is proposed that improves the system maintainability and traceability. Furthermore, high performance is obtained as a result of parallel execution of the different tasks that compose the architecture. The control component of the architecture implements a new visual servoing technique for resolving the redundancy at the acceleration level in order to guarantee the correct motion of both end-effector and joints. The controller generates the required torques for the tracking of image trajectories. However, in order to guarantee the applicability of this technique, a repetitive path tracked by the robot-end must produce a periodic joint motion. A chaos controller is integrated in the visual servoing system and the correct performance is observed in low and high velocities. Furthermore, a method to adjust the chaos controller is proposed and validated using a real three-link robot.
Resumo:
Traditional visual servoing systems do not deal with the topic of moving objects tracking. When these systems are employed to track a moving object, depending on the object velocity, visual features can go out of the image, causing the fail of the tracking task. This occurs specially when the object and the robot are both stopped and then the object starts the movement. In this work, we have employed a retina camera based on Address Event Representation (AER) in order to use events as input in the visual servoing system. The events launched by the camera indicate a pixel movement. Event visual information is processed only at the moment it occurs, reducing the response time of visual servoing systems when they are used to track moving objects.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Two celluloid filters for visual use only mounted on p. 21.
Resumo:
Com o desenvolvimento das tecnologias digitais de edição, animação e pós-produção, a linguagem motion graphics se configurou como ferramenta criativa nas relações entre som e imagem. Este artigo tem como objetivo identificar e analisar aspectos inovadores da utilização da linguagem motion graphics nos videoclipes de artistas brasileiros, no período de 1990 a 2010. Por meio de categorias de avaliação relacionadas 1) aos softwares de composição visual, 2) à evolução da linguagem do clipe no período e 3) às relações entre música, vídeo e gráficos utilizados, quatro estágios de aplicação criativa dos recursos dessa linguagem nos videoclipes brasileiros foram estabelecidos.
Resumo:
Motion-induced blindness (MIB) is a phenomenon, perhaps related to perceptual rivalry, where stationary targets disappear and reappear in a cyclic mode when viewed against a background (mask) of coherent, apparent 3-D motion. Since MIB has recently been shown to share similar temporal properties with binocular rivalry, we probed the appearance-disappearance cycle of MIB using unilateral, single-pulse transcranial magnetic stimulation (TMS)-a manipulation that has previously been shown to influence binocular rivalry. Effects were seen for both hemispheres when the timing of TMS was determined prospectively on the basis of a given subject's appearance-disappearance cycle, so that it occurred on average around 300 ms before the time of perceptual switch. Magnetic stimulation of either hemisphere shortened the time to switch from appearance to disappearance and vice versa. However, TMS of left posterior parietal cortex more selectively shortened the disappearance time of the targets if delivered in phase with the disappearance cycle, but lengthened it if TMS was delivered in the appearance phase after the perceptual switch. Opposite effects were seen in the right hemisphere, although less marked than the left-hemisphere effects. As well as sharing temporal characteristics with binocular rivalry, MIB therefore seems to share a similar underlying mechanism of interhemispheric modulation. Interhemispheric switching may thus provide a common temporal framework for uniting the diverse, multilevel phenomena of perceptual rivalry.
Resumo:
To understand performance of evasive and interceptive actions it is important to know how people decide when to initiate a movement - initiating at the 'right' moment is often essential for successful performance. It has been proposed that initiation is triggered when a perceptually derived quantity reaches an invariant criterion value. Candidate quantities include time-to-collision (TTC), distance, and rate of image expansion ( ROE), all of which have received empirical support. We studied initiation of an evasive manoeuvre in a computer-simulated steering task in which the observer was required to steer through a stationary visual environment and avoid colliding with an obstacle in their path. The results could not be explained by hypotheses which propose that evasive manoeuvre initiation is based on a fixed criterion value of TTC or distance. The overall pattern was, however, consistent with the use of a criterion ROE value. This was further tested by analyses designed to directly evaluate whether the ROE value used to initiate the response was the same across experimental conditions. Only two of the six participants showed evidence for using the ROE strategy.
Resumo:
The hallucinogenic serotonin(IA&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sensitivity for random dot patterns, likely mediated by high-level global motion detectors, but not contrast sensitivity for drifting gratings, believed to be mediated by low-level detectors. These results are in line with those observed within schizophrenic populations and are discussed in respect to the proposition that psilocybin may provide a model to investigate clinical psychosis and the pharmacological underpinnings of visual perception in normal populations.
Resumo:
Recently Hupe and Rubin (2003, Vision Research 43 531 - 548) re-introduced the plaid as a form of perceptual rivalry by using two sets of drifting gratings behind a circular aperture to produce quasi-regular perceptual alternations between a coherent moving plaid of diamond-shaped intersections and the two sets of component 'sliding' gratings. We call this phenomenon plaid motion rivalry (PMR), and have compared its temporal dynamics with those of binocular rivalry in a sample of subjects covering a wide range of perceptual alternation rates. In support of the proposal that all rivalries may be mediated by a common switching mechanism, we found a high correlation between alternation rates induced by PMR and binocular rivalry. In keeping with a link discovered between the phase of rivalry and mood, we also found a link between PMR and an individual's mood state that is consistent with suggestions that each opposing phase of rivalry is associated with one or the other hemisphere, with the 'diamonds' phase of PMR linked with the 'positive' left hemisphere.
Resumo:
It is widely supposed that things tend to look blurred when they are moving fast. Previous work has shown that this is true for sharp edges but, paradoxically, blurred edges look sharper when they are moving than when stationary. This is 'motion sharpening'. We show that blurred edges also look up to 50% sharper when they are presented briefly (8-24 ms) than at longer durations (100-500 ms) without motion. This argues strongly against high-level models of sharpening based specifically on compensation for motion blur. It also argues against a recent, low-level, linear filter model that requires motion to produce sharpening. No linear filter model can explain our finding that sharpening was similar for sinusoidal and non-sinusoidal gratings, since linear filters can never distort sine waves. We also conclude that the idea of a 'default' assumption of sharpness is not supported by experimental evidence. A possible source of sharpening is a nonlinearity in the contrast response of early visual mechanisms to fast or transient temporal changes, perhaps based on the magnocellular (M-cell) pathway. Our finding that sharpening is not diminished at low contrast sets strong constraints on the nature of the nonlinearity.