325 resultados para vine
Resumo:
The Pater metavolcanic suite (PVS) was extruded as part O'f the basal Pater Formation of the Huronian Supergroup ca. 2.4 Ga. They Ars classified as wi thin-plate tholeiites associated with an immature ri-fting episode, and are inter layered with associated vol cani clastic and metasedimentary units. Post-solidif ication alteration caused redistribution o-f the alkalies, Sr, Rb, Ba, Cu, and SiO^. Ce, Y, Zr, CFezOs (as total Fe), Al^Os, TiOa, and, PaOa are considered to have remained essentially immobile in least altered samples. Petrogenetic modelling indicates the PVS was derived from the partial melting of two geochemical ly similar sources in the sub-continental lithosphere. Fractionation was characterized by an oli vine-plagioclase assemblage and a sub-volcanic plagioclase-clinopyroxene assemblage. A comparative study indicates that enrichment of the postulated Huronian source cannot be reconciled by Archean contamination. Enrichment is thought to have been caused by hydrous veined metasomatic heterogeneities in the sub-continental lithosphere, generated by an Archean subduct ion event before 2.68 Ga.
Resumo:
Icewine is an intensely sweet, unique dessert wine fennented from the juice of grapes that have frozen naturally on the vine. The juice pressed from the frozen grapes is highly concentrated, ranging from a minimum of 35° Brix to approximately 42° Brix. Often Icewine fennentations are sluggish, taking months to reach the desired ethanol level, and sometimes become stuck. In 6 addition, Icewines have high levels of volatile acidity. At present, there is no routine method of yeast inoculation for fennenting Icewine. This project investigated two yeast inoculum levels, 0.2 gIL and 0.5 gIL. The fennentation kinetics of inoculating these yeast levels directly into the sterile Icewine juice or conditioning the cells to the high sugar levels using a step wise acclimatization procedure were also compared. The effect of adding GO-FERM, a yeast nutrient, was also assessed. In the sterile fennentations, yeast inoculated at 0.2 gIL stopped fennenting before the required ethanol level was achieved, producing only 7.8% (v/v) and 8.1 % (v/v) ethanol for the direct and conditioned inoculations, respectively. At 0.5 gIL, the stepwise conditioned cells fennented the most sugar, producing 12.2% (v/v) ethanol, whereas the direct inoculum produced 10.5% (v/v) ethanol. The addition of the yeast nutrient GO-FERM increased the rate of biomass accumulation, but reduced the ethanol concentration in wines fennented at 0.5 gIL. There was no significant difference in acetic acid concentration in the final wines across all treatments. Fennentations using unfiltered Icewine juice at the 0.5 gIL inoculum level were also compared to see if the effects of yeast acclimatization and micronutrient addition had the same impact on fennentation kinetics and yeast metabolite production as observed in the sterile-filtered juice fennentations. In addition, a full descriptive analysis of the finished wines was carried out to further assess the impact of yeast inoculation method on Icewine sensory quality. At 0.5 gIL, the stepwise conditioned cells fennented the most sugar, producing 11.5% (v/v) ethanol, whereas the direct inoculum produced 10.0% (v/v) ethanol. The addition of the yeast nutrient GO-FERM increased the peak viable cell numbers, but reduced the ethanol concentration in wines fennented at 0.5 gIL. There was a significant difference 7 in acetic acid concentration in the final wines across all treatments and all treatments affected the sensory profiles of the final wines. Wines produced by direct inoculation were described by grape and raisin aromas and butter flavour. The addition of GO-FERM to the direct inoculation treatment shifted the aroma/flavour profiles to more orange flavour and aroma, and a sweet taste profile. StepWise acclimatizing the cells resulted in wines described more by peach and terpene aroma. The addition of GO-FERM shifted the profile to pineapple and alcohol aromas as well as alcohol flavour. Overall, these results indicate that the addition of GO-FERM and yeast acclimatization shortened the length of fermentation and impacted the sensory profiles of the resultant wines.
Resumo:
Lewis Tyrell married Jane Gains on August 31, 1849 in Culpeper Court House, Virginia. Jane Gains was a spinster. Lewis Tyrell died September 25, 1908 at his late residence, Vine St. and Welland Ave., St. Catharines, Ont. at the age of 81 years, 5 months. Jane Tyrell died March 1, 1886, age 64 years. Their son? William C. Tyrell died January 15, 1898, by accident in Albany, NY, age 33 years, 3 months. John William Taylor married Susan Jones were married in St. Catharines, Ont. on August 10, 1851 by William Wilkinson, a Baptist minister. On August 9, 1894 Charles Henry Bell (1871-1916), son of Stephen (1835?-1876) and Susan Bell, married Mary E. Tyrell (b. 1869?) daughter of Lewis and Alice Tyrell, in St. Catharines Ontario. By 1895 the Bell’s were living in Erie, Pennsylvania where children Delbert Otto (b. 1895) and Edna Beatrice (b. 1897) were born. By 1897 the family was back in St. Catharines where children Lewis Tyrell (b. 1899), Gertrude Cora (b. 1901), Bessie Jane (b. 1902), Charles Henry (b. 1906), Richard Nelson (b. 1911) and William Willoughby (b. 1912) were born. Charles Henry Bell operated a coal and ice business on Geneva Street. In the 1901 Census for St. Catharines, the Bell family includes the lodger Charles Henry Hall. Charles Henry Hall was born ca. 1824 in Maryland, he died in St. Catharines on November 11, 1916 at the age of 92. On October 24, 1889 Charles Hall married Susan Bell (1829-1898). The 1911 Census of Canada records Charles Henry Hall residing in the same household as Charles Henry and Mary Bell. The relationship to the householder is step-father. It is likely that after Stephen Bell’s death in 1876, his widow, Susan Bell married Hall. In 1939, Richard Nelson Bell, son of Charles Henry and Mary Tyrell Bell, married Iris Sloman. Iris (b. 22 May 1912 in Biddulph Township, Middlesex, Ontario) was the daughter of Albert (son of Joseph b. 1870 and Elizabeth Sloman, b. 1872) and Josie (Josephine Ellen) Butler Sloman of London, Ont. Josie (b. 1891) was the daughter of Everett Richard and Elizabeth McCarthy (or McCarty) Butler, of Lucan Village, Middlesex North. According to the 1911 Census of Canada, Albert, a Methodist, was a porter on the railroad. His wife, Josephine, was a Roman Catholic. Residing with Albert and Josie were Sanford and Sadie Butler and Sidney Sloman, likely siblings of Albert and Josephine. The Butler family is descended from Peter Butler, a former slave, who had settled in the Wilberforce Colony in the 1830s. Rick Bell b. 1949 in Niagara Falls, Ont. is the son of Richard Nelson Bell. In 1979, after working seven years as an orderly at the St. Catharines General Hospital while also attending night school at Niagara College, Rick Bell was hired by the Thorold Fire Dept. He became the first Black professional firefighter in Niagara. He is a founding member of the St. Catharines Junior Symphony; attended the Banff School of Fine Arts in 1966 and also performed with the Lincoln & Welland Regimental Band and several other popular local groups. Upon the discovery of this rich archive in his mothers’ attic he became passionate about sharing his Black ancestry and the contributions of fugitive slaves to the heritage Niagara with local school children. He currently resides in London, Ont.
Resumo:
Icewine is a sweet dessert wine fermented from the juice of grapes naturally frozen on the vine. The production of Icewine faces many challenges such as sluggish fermentation, which often yields wines with low ethanol, and an accumulation of high concentration of volatile acidity, mainly in the form of acetic acid. This project investigated three new yeast strains as novel starter cultures for Icewine fermentation with particular emphasis on reducing acetic acid production: a naturally occurring strain of S. bayanus/S. pastorianus isolated from Icewine grapes, and two hybrids between S. cerevisiae and S. bayanus, AWRI 1571 and AWRI 1572. These strains were evaluated for sugar consumption patterns and metabolic production of ethanol, glycerol and acetic acid, and were compared to the performance of a standard commercial wine yeast KI-VI116. The ITS rONA region of the two A WRI crosses was also analyzed during fermentations to assess their genomic stability. Icewine fermentations were performed in sterile filtered juice, in the absence of indigenous microflora, and also in unfiltered juice in order to mirror commercial wine making practices. The hybrid A WRI 1572 was found to be a promising candidate as a novel starter culture for Icewine production. I t produced 10.3 % v/v of ethanol in sterile Riesling Icewine fermentations and 11.2 % v/v in the unfiltered ones within a reasonable fermentation time (39 days). Its acetic acid production per gram sugar consumed was approximately 30% lower in comparison with commercial wine yeast K I -V 1116 under both sterile filtered and unfiltered fermentations. The natural isolate S. bayanus/S. pastorianus and AWRI 1571 did not appear to be suitable for commercial Icewine production. They reached the target ethanol concentration of approximately 10 % v/v in 39 day fermentations and also produced less acetic acid as a function of both time and sugar consumed in sterile fermentations compared to KI-V1116. However, in unfiltered fermentations, both of them failed to produce the target concentration of ethanol and accumulated high concentration of acetic acid. Both A WRI crosses displayed higher loss of or reduced copies in ITS rDNA region from the S. bayanus parent compared to the S. cerevisiae parent; however, these genomic losses could not be related to the metabolic profile.
Resumo:
The Deaths page from the Bell Family Bible listing the deaths of Jane Tyrrell in 1886, William C. Tyrrell in 1898, and Lewis Tyrrell in 1908. This Bible was in the possession of the Rick Bell family of St. Catharines, Ontario. Relatives of the Bell family were former Black slaves from the United States who settled in Canada.The handwritten entry appears to read as follows: "Jane Tyrrell, died March 1st 1886 age 64 yrs. William C. Tyrrell died January 15th 1898 by accident in Albany N.Y. age 33 yrs 3 months Lewis Tyrrell died September 25th 1908 at his late residence Vine and Welland Ave. St. Catharines age 81 yrs 5 months." There are various spellings of the Tyrrell name within the Bell family archive. Other forms of the name include Tyrell, Tyrrill, and Terrell.
Resumo:
The relationships between vine water status, soil texture, and vine size were observed in four Niagara, Ontario Pinot noir vineyards in 2008 and 2009. The vineyards were divided into water status zones using geographic information systems (GIS) software to map the seasonal mean midday leaf water potential (,P), and dormant pruning shoot weights following the 2008 season. Fruit was harvested from all sentinel vines, bulked by water status zones and made into wine. Sensory analysis included a multidimensional sorting (MDS) task and descriptive analysis (DA) of the 2008 wines. Airborne multispectral images, with a spatial resolution of 38 cm, were captured four times in 2008 and three times in 2009, with the final flights around veraison. A semi-automatic process was developed to extract NDVI from the images, and a masking procedure was identified to create a vine-only NDVI image. 2008 and 2009 were cooler and wetter than mean years, and the range of water status zones was narrow. Yield per vine, vine size, anthocyanins and phenols were the least consistent variables. Divided by water status or vine size, there were no variables with differences between zones in all four vineyards in either year. Wines were not different between water status zones in any chemical analysis, and HPLC revealed that there were no differences in individual anthocyanins or phenolic compounds between water status zones within the vineyard sites. There were some notable correlations between vineyard and grape composition variables, and spatial trends were observed to be qualitatively related for many of the variables. The MDS task revealed that wines from each vineyard were more affected by random fermentation effects than water status effects. This was confirmed by the DA; there were no differences between wines from the water status zones within vineyard sites for any attribute. Remotely sensed NDVI (normalized difference vegetation index) correlated reasonably well with a number of grape composition variables, as well as soil type. Resampling to a lower spatial resolution did not appreciably affect the strength of correlations, and corresponded to the information contained in the masked images, while maintaining the range of values of NDVI. This study showed that in cool climates, there is the potential for using precision viticulture techniques to understand the variability in vineyards, but the variable weather presents a challenge for understanding the driving forces of that variability.
Resumo:
The focus of this study was to detennine whether soil texture and composition variables were related to vine water status and both yield components and grape composition, and whether multispectral high definition airborne imagery could be used to segregate zones in vineyards to target fruit of highest quality for premium winemaking. The study took place on a 10-ha commercial Riesling vineyard at Thirty Bench Winemakers, in Beamsville (Ontario). Results showed that Soil moisture and leaf'l' were temporally stable and related to berry composition and remotely-sensed data. Remote-sensing, through the calculation of vegetation indices, was particularly useful to predict vine vigor, yield, fruit maturity as well as berry monoterpene concentration; it could also clearly assist in making wines that are more representative ofthe cultivar used, and also wines that are a reflection of a specific terroir, since calculated vegetation indices were highly correlated to typical Riesling.
Resumo:
Niagara Peninsula of Ontario is the largest viticultural area in Canada. Although it is considered to be a cool and wet region, in the last decade many water stress events occurred during the growing seasons with negative effects on grape and wine quality. This study was initiated to understand and develop the best strategies for water management in vineyards and those that might contribute to grape maturity advancement. The irrigation trials investigated the impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape composition and wine sensory profiles. The irrigation experiments were conducted in a commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 2005 through 2009. The two experiments that tested the combination of different water regimes and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD (100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were nonirrigated. The irrigation treatments were compared for many variables related to soil water status, vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI treatments were overall more consistent in their positive effect on grape composition and wine varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of the experimental period. Soil water status had a greater and more consistent effect on red grapevine cultivars rather than on white winegrape cultivars. To understand the relationships among soil and plant water status, plant physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately described the water status in the vines. Endogenous ABA and some of its catabolites were strongly affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE was the main catabolite in treatments with high water deficits, while PA and DPA were higher in treatments with high water status, suggesting that the vine produced more ABA-GE under water deficits to maintain rapid control of the stomata. These differences between irrigation treatments with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. Two trials using exogenous ABA investigated the effect of different concentrations of ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + untreated control] while the second experiment consisted in three replicates x four treatments [(full canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both solution concentration and the target organ. ABA affected not only fruit composition but also yield components. Berries treated with ABA had lower weight and higher skin dry mass, which constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide considerable benefits to wine industry in terms of grape composition, wine style and schedule activities in the winery, particularly in wet and cool years. These trials provide the ftrst comprehensive data in eastern North America on the response of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from this study additionally might be a forward step in understanding the ABA metabolism, and its relationship with water status. Future research should be focused on ftnding the ABA threshold required to trigger the ripening process, and how this process could be controlled in cool climates.
Resumo:
Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999.5 B63 P54 2007
Resumo:
Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by a myriad of factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site. It was hypothesized that winter hardiness would be influenced by certain terroir factors , specifically that vines with low water status [more negative leaf water potential (leaf ψ)] would be more winter hardy than vines with high water status (more positive leaf ψ). Twelve different vineyard blocks (six each of Riesling and Cabernet franc) throughout the Niagara Region in Ontario, Canada were chosen. Data were collected during the growing season (soil moisture, leaf ψ), at harvest (yield components, berry composition), and during the winter (bud LT50, bud survival). Interpolation and mapping of the variables was completed using ArcGIS 10.1 (ESRI, Redlands, CA) and statistical analyses (Pearson’s correlation, principal component analysis, multilinear regression) were performed using XLSTAT. Clear spatial trends were observed in each vineyard for soil moisture, leaf ψ, yield components, berry composition, and LT50. Both leaf ψ and berry weight could predict the LT50 value, with strong positive correlations being observed between LT50 and leaf ψ values in eight of the 12 vineyard blocks. In addition, vineyards in different appellations showed many similarities (Niagara Lakeshore, Lincoln Lakeshore, Four Mile Creek, Beamsville Bench). These results suggest that there is a spatial component to winter injury, as with other aspects of terroir, in the Niagara region.
Resumo:
Vineyards vary over space and time, making geomatics technologies ideally suited to study terroir. This study applied geomatics technologies - GPS, remote sensing and GIS - to characterize the spatial variability at Stratus Vineyards in the Niagara Region. The concept of spatial terroir was used to visualize, monitor and analyze the spatial and temporal variability of variables that influence grape quality. Spatial interpolation and spatial autocorrelation were used to measure the pattern demonstrated by soil moisture, leaf water potential, vine vigour, soil composition and grape composition on two Cabernet Franc blocks and one Chardonnay block. All variables demonstrated some spatial variability within and between the vineyard block and over time. Soil moisture exhibited the most significant spatial clustering and was temporally stable. Geomatics technologies provided valuable spatial information related to the natural spatial variability at Stratus Vineyards and can be used to inform and influence vineyard management decisions.
Resumo:
Wine produced using an appassimento-type process represents a new and exciting innovation for the Ontario wine industry. This process involves drying grapes that have already been picked from the vine, which increases the sugar content due to dehydration and induces a variety of changes both within and on the surface of the grapes. Increasing sugar contents in musts subject wine yeast to conditions of high osmolarity during alcoholic fermentations. Under these conditions, yeast growth can be inhibited, target alcohol levels may not be attained and metabolic by-products of the hyperosmotic stress response, including glycerol and acetic acid, may impact wine composition. The further metabolism of acetic acid to acetylCoA by yeast facilitates the synthesis of ethyl acetate, a volatile compound that can also impact wine quality if present in sufficiently high concentrations. The first objective of this project was to understand the effect of yeast strain and sugar concentration on fermentation kinetics and metabolite formation, notably acetic acid and ethyl acetate, during fermentation in appassimento-type must. Our working hypotheses were that (1) the natural isolate Saccharomyces bayanus would produce less acetic acid and ethyl acetate compared to Saccharomyces cerevisiae strain EC-1118 fermenting the high and low sugar juices; (2) the wine produced using the appassimento process would contain higher levels of acetic acid and lower levels of ethyl acetate compared to table wine; (3) and the strains would be similar in the kinetic behavior of their fermentation performances in the high sugar must. This study determined that the S. bayanus strain produced significantly less acetic acid and ethyl acetate in the appassimento wine and table wine fermentations. Differences in acetic acid and ethyl acetate production were also observed within strains fermenting the two sugar conditions. Acetic acid production was higher in table wine fermented by S. bayanus as no acetic acid was produced in appassimento-style wine, and 1.4-times higher in appassimento wine fermented by EC-1118 over that found in table wine. Ethyl acetate production was 27.6-times higher in table wine fermented by S. bayanus, and 5.2-times higher by EC-1118, compared to that in appassimento wine. Sugar utilization and ethanol production were comparable between strains as no significant differences were determined. The second objective of this project was to bring a method in-house for measuring the concentration of pyridine nucleotides, NAD+, NADP+, NADH and NADPH, in yeast cytosolic extract. Development of this method is of applicative interest for our lab group as it will enable the redox balance of the NAD+/ NADH and NADP+/ NADPH systems to be assessed during high sugar fermentations to determine their respective roles as metabolic triggers for acetic acid production. Two methods were evaluated in this study including a UV-endpoint method using a set of enzymatic assay protocols outlined in Bergmeyer (1974) and a colorimetric enzyme cycling method developed by Sigma-Aldrich® using commercial kits. The former was determined to be limited by its low sensitivity following application to yeast extract and subsequent coenzyme analyses, while the latter was shown to exhibit greater sensitivity. The results obtained from the kits indicated high linearity, accuracy and precision of the analytical method for measuring NADH and NADPH, and that it was sensitive enough to measure the low coenzyme concentrations present in yeast extract samples. NADtotal and NADPtotal concentrations were determined to be above the lower limit of quantification and within the range of the respective calibration curves, making this method suitable for our research purposes.
Resumo:
This study analyzed the use of two viticultural practices: “crop level” (half crop; HC, and full crop; FC) and “hang times”, and their impact on the composition of four grape cultivars; Pinot gris, Riesling, Cabernet Franc and Cabernet Sauvignon from the Niagara Region and wine volatile composition by GC-MS. It was hypothesized that keeping a full crop with a longer hang time would have a greater impact on wine quality than reducing the crop level. In all cultivars, a reduction of crop level induced reductions in yield, clusters per vine and crop load, with increases in Brix. Extended hang time also increased Brix related to desiccation. The climatic conditions at harvest had an impact on hang time effects. The GC-MS analysis detected the presence of 30 volatile components in the wine, with different odour activity values. Harvest time had a positive impact than crop reduction in almost all compounds.
Resumo:
Inniskillin Wines was founded by Karl Kaiser and Donald Ziraldo in 1975 in Niagara-on-the-Lake, Ontario. They had met the previous year, when Karl Kaiser, a winemaker and chemist, purchased some grapes from Donald Ziraldo, who owned and operated Ziraldo Nurseries. The two shared a vision of producing better quality Canadian wines and formed a partnership, with Kaiser making the wine and Ziraldo serving as company President. In 1975, they were granted a winery license by the LCBO, the first one granted since 1929. The company name Inniskillin was derived from the Inniskilling Fusilliers, an Irish regiment whose Colonel once owned the land that Ziraldo Nurseries occupied. This was the original site of the winery, although in 1978 the winery moved to the Brae Burn Estate, their current location. In 1982 the winery expanded by 50 acres with the addition of the Montague Vineyard, and another 50 acres was acquired in 1991. The Niagara-on-the-Lake vineyard produces single vineyards bottlings of Chardonnay, Pinot Noir, Merlot and Pinot Grigio/Pinot Gris. In 1984, Karl Kaiser began producing icewine from Vidal grapes frozen naturally on the vine. Inniskillin garnered international acclaim for the quality of their icewines, receiving the prestigious Grand Prix d’Honneur at VinExpo in 1991, for their 1989 Vidal icewine. This established Inniskillin as a producer of world class wines, while also raising the profile of Canadian wines in general. The company branched out their operations, first acquiring vineyards in the Napa Valley in 1989 to form Inniskillin Napa (producing wines under the Terra label), and in 1994 establishing Inniskillin Okanagan in the Okanagan Valley in British Columbia. The Napa valley venture ceased in the mid 90’s, while Inniskillin Okanagan continues to operate. In 2006, Karl Kaiser and Donald Ziraldo left Inniskillin. Kaiser retired, while Ziraldo became chair of the Vineland Research and Innovation Center (2006-2011), and remains involved in the wine industry. In 2007, Bruce Nicholson joined Inniskillin as winemaker. Nicholson continues to produce award-winning wines under the Inniskillin label, receiving the top award, the Premio Speciale Gran Award, at Vinitaly 2009 for his 2006 Gold Vidal and his 2006 Sparkling Vidal Icewine. In 2012, he received several awards for the 2008 Riesling Icewine, including gold at the International Wine and Spirits Competition in London, UK, the San Francisco International Wine Championships, and Selections Mondials des Vins Canada.
Resumo:
Donald J. P. Ziraldo, C.M., BSc., LLD was born in St. Catharines, Ontario on October 13, 1948 to Fredrick and Irma (Schiratti) Ziraldo. He graduated Denis Morris High School in St. Catharines in 1967, and received his B.Sc. in Agriculture at the University of Guelph in 1971. In 1974, Ziraldo was running Ziraldo Nurseries when he met Austrian born schoolteacher, chemist and winemaker Karl J. Kaiser. They realized that there was a gap in the premium varietal wine market and decided to plant a premium traditional European variety of grape vine species, the Vitis vinifera. This was an innovation in the Niagara region because the current wine producers were not using premium European grapes at the time. Ziraldo and Kaiser founded and then formally incorporated Inniskillin Wines Inc. in Niagara-on-the-Lake, Ontario on July 31, 1975. Ziraldo successfully lobbied General George Kitching, CEO of the LCBO, for a winery license. In 1975, Kitching granted him a winery license, the first in Ontario since Prohibition ended. From the beginning, there was a division of labour where Kaiser focused on the winemaking and Ziraldo focused on the marketing and promotion of the wines. Ziraldo also became president of the company. Ziraldo and Kaiser worked on improving their winemaking techniques and promoting their products and company. Ziraldo has been called ‘one of the founding fathers of the Canadian wine industry’, and it is widely acknowledged that both men played a large role in the success and growth of the Canadian wine industry. Together they pioneered the estate winery movement in Canada. A major turning point Inniskillin came in 1984 when Karl Kaiser successfully harvested the first Icewine crop from frozen grapes on the vine and bottled Eiswein Vidal (Icewine). In 1990, Inniskillin received worldwide recognition for this Icewine when their 1989 Vidal Icewine won the most prestigious award in the wine world, the Grand Prix d’Honneur, given at Vinexpo in France. This victory has been called ‘the award heard round the world’ and it launched Inniskillin into the international wine arena. At the same time, this helped lift the profile of Canadian wines in general. Inniskillin not only became Canada’s leading producer of Icewine, but it also became known for producing ‘one of the world’s great wines’. After the 1990 award, Ziraldo began a major public relations campaign to promote Inniskillin and build Icewine into a worldwide brand. He travelled broadly every year to promote the brand and products and networked extensively with politicians, celebrities, chefs, sommeliers, etc. To ensure worldwide and long-term success, Ziraldo introduced Icewine to Asia and the United States which were new markets. He developed a new Icewine glass with George Riedel. Tony Aspler has called Ziraldo ‘Canada’s Wine Ambassador’. Ziraldo was President of Inniskillin Wines Inc. (Niagara) from 1975 to 2006. In 1992, Inniskillin merged with Cartier Wines, and in 1993 Cartier Inniskillin Vintners Inc. merged with T.G. Bright & Co. Limited, forming the new company Vincor International Inc. Inniskillin wines was now a subsidiary of Vincor. Ziraldo became a Director at Vincor International Inc. from 1993 to 2004. From 1989 to the mid 1990s, Ziraldo also became President of Inniskillin Napa, in Napa Valley, California. Inniskillin purchased Napa Valley vineyards and produced wines under the Terra label. In 1994, Ziraldo set up a subsidiary estate winery of Inniskillin in Oliver, British Columbia which was called Inniskillin Okanagan Vineyards Inc. He became President of the winery. This started as a partnership between Inniskillin and the local Inkameep Indian Band in the Okanagan. In 2006, Ziraldo left Inniskillin and since that time he has been involved in other Icewine related ventures such as running Ziraldo Estate Winery and producing Ziraldo Riesling Icewine 2007. He also is in partnership with the Niagara based Equifera Estate Winery to produce Equifera Icewine. His most recent projects include planting Picolit grapes in his parent’s hometown, in a project called Picolit Di Fagagna and becoming Managing Director of the Senhora Do Convento Port Winery in Portugal. Donald Ziraldo was instrumental in the creation of the Vintners Quality Alliance (VQA) in Ontario and was its founding Chair from 1988-1995. The VQA was established as a regulatory and appellation system which secured the quality and origin of Canadian wines made under this system. The VQA designation and bottle label gave the consumer confidence that the wines they were purchasing were 100% local products. The VQA system was set up first in Ontario and then in British Columbia.