855 resultados para video object segmentation
Resumo:
Lateral ventricular volumes based on segmented brain MR images can be significantly underestimated if partial volume effects are not considered. This is because a group of voxels in the neighborhood of lateral ventricles is often mis-classified as gray matter voxels due to partial volume effects. This group of voxels is actually a mixture of ventricular cerebro-spinal fluid and the white matter and therefore, a portion of it should be included as part of the lateral ventricular structure. In this note, we describe an automated method for the measurement of lateral ventricular volumes on segmented brain MR images. Image segmentation was carried in combination of intensity correction and thresholding. The method is featured with a procedure for addressing mis-classified voxels in the surrounding of lateral ventricles. A detailed analysis showed that lateral ventricular volumes could be underestimated by 10 to 30% depending upon the size of the lateral ventricular structure, if mis-classified voxels were not included. Validation of the method was done through comparison with the averaged manually traced volumes. Finally, the merit of the method is demonstrated in the evaluation of the rate of lateral ventricular enlargement. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Given the importance of syllables in the development of reading, spelling, and phonological awareness, information is needed about how children syllabify spoken words. To what extent is syllabification affected by knowledge of spelling, to what extent by phonology, and which phonological factors are influential? In Experiment 1, six- and seven-year-old children did not show effects of spelling on oral syllabification, performing similarly on words such as habit and rabbit. Spelling influenced the syllabification of older children and adults, with the results suggesting that knowledge of spelling must be well entrenched before it begins to affect oral syllabification. Experiment 2 revealed influences of phonological factors on syllabification that were similar across age groups. Young children, like older children and adults, showed differences between words with short and long vowels (e.g., lemon vs. demon) and words with sonorant and obstruent intervocalic consonants (e.g., melon vs. wagon). (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
The aim of this experiment was to determine the effectiveness of two video-based perceptual training approaches designed to improve the anticipatory skills of junior tennis players. Players were assigned equally to an explicit learning group, an implicit learning group, a placebo group or a control group. A progressive temporal occlusion paradigm was used to examine, before and after training, the ability of the players to predict the direction of an opponent's service in an in-vivo on-court setting. The players responded either through hitting a return stroke or making a verbal prediction of stroke direction. Results revealed that the implicit learning group, whose training required them to predict serve speed direction while viewing temporally occluded video footage of the return-of-serve scenario, significantly improved their prediction accuracy after the training intervention. However, this training effect dissipated after a 32 day unfilled retention interval. The explicit learning group, who received instructions about the specific aspects of the pre-contact service kinematics that are informative with respect to service direction, did not demonstrate any significant performance improvements after the intervention. This, together with the absence of any significant improvements for the placebo and control groups, demonstrated that the improvement observed for the implicit learning group was not a consequence of either expectancy or familiarity effects.
Resumo:
The play of children with autistic spectrum disorder (ASD) is a valuable medium for assessment and intervention, and its analysis has the potential to aid diagnosis. This study investigated spontaneous play behavior and play object preferences for 24 preschool children with ASD in a typical occupational therapy clinical environment. Play behavior was rated and choice of play object noted at 10-second intervals from a 15-minute video recording of unstructured play. Statistical analyses indicated that play behavior was consistent with descriptions in the literature. In addition, the children demonstrated clear preferences for play objects in the form of popular characters (e.g., Thomas the Tank Engine) and those with sensorimotor properties. We propose that the inclusion of preferred play objects in a clinical environment may increase intrinsic motivation to play, and thereby enhance assessment and intervention.
Resumo:
Time motion analysis is extensively used to assess the demands of team sports. At present there is only limited information on the reliability of measurements using this analysis tool. The aim of this study was to establish the reliability of an individual observer's time motion analysis of rugby union. Ten elite level rugby players were individually tracked in Southern Hemisphere Super 12 matches using a digital video camera. The video footage was subsequently analysed by a single researcher on two occasions one month apart. The test-retest reliability was quantified as the typical error of measurement (TEM) and rated as either good (10% TEM). The total time spent in the individual movements of walking, jogging, striding, sprinting, static exertion and being stationary had moderate to poor reliability (5.8-11.1% TEM). The frequency of individual movements had good to poor reliability (4.3-13.6% TEM), while the mean duration of individual movements had moderate reliability (7.1-9.3% TEM). For the individual observer in the present investigation, time motion analysis was shown to be moderately reliable as an evaluation tool for examining the movement patterns of players in competitive rugby. These reliability values should be considered when assessing the movement patterns of rugby players within competition.
Resumo:
This paper is concerned with methods for refinement of specifications written using a combination of Object-Z and CSP. Such a combination has proved to be a suitable vehicle for specifying complex systems which involve state and behaviour, and several proposals exist for integrating these two languages. The basis of the integration in this paper is a semantics of Object-Z classes identical to CSP processes. This allows classes specified in Object-Z to be combined using CSP operators. It has been shown that this semantic model allows state-based refinement relations to be used on the Object-Z components in an integrated Object-Z/CSP specification. However, the current refinement methodology does not allow the structure of a specification to be changed in a refinement, whereas a full methodology would, for example, allow concurrency to be introduced during the development life-cycle. In this paper, we tackle these concerns and discuss refinements of specifications written using Object-Z and CSP where we change the structure of the specification when performing the refinement. In particular, we develop a set of structural simulation rules which allow single components to be refined to more complex specifications involving CSP operators. The soundness of these rules is verified against the common semantic model and they are illustrated via a number of examples.
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention
Resumo:
The interoperability of IP video equipment is a critical problem for surveillance systems and other video application developers. ONVIF is one of the two specifications addressing the standardization of networked devices interface, and it is based on SOAP. This paper addresses the development of an ONVIF library to develop clients of video cameras. We address the choice of a web services toolkit, and how to use the selected toolkit to develop a basic library. From that, we discuss the implementation of features that ...
Resumo:
Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.
Resumo:
While fluoroscopy is still the most widely used imaging modality to guide cardiac interventions, the fusion of pre-operative Magnetic Resonance Imaging (MRI) with real-time intra-operative ultrasound (US) is rapidly gaining clinical acceptance as a viable, radiation-free alternative. In order to improve the detection of the left ventricular (LV) surface in 4D ultrasound, we propose to take advantage of the pre-operative MRI scans to extract a realistic geometrical model representing the patients cardiac anatomy. This could serve as prior information in the interventional setting, allowing to increase the accuracy of the anatomy extraction step in US data. We have made use of a real-time 3D segmentation framework used in the recent past to solve the LV segmentation problem in MR and US data independently and we take advantage of this common link to introduce the prior information as a soft penalty term in the ultrasound segmentation algorithm. We tested the proposed algorithm in a clinical dataset of 38 patients undergoing both MR and US scans. The introduction of the personalized shape prior improves the accuracy and robustness of the LV segmentation, as supported by the error reduction when compared to core lab manual segmentation of the same US sequences.
Resumo:
One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69±0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.
Resumo:
Quantitative analysis of cine cardiac magnetic resonance (CMR) images for the assessment of global left ventricular morphology and function remains a routine task in clinical cardiology practice. To date, this process requires user interaction and therefore prolongs the examination (i.e. cost) and introduces observer variability. In this study, we sought to validate the feasibility, accuracy, and time efficiency of a novel framework for automatic quantification of left ventricular global function in a clinical setting.
Resumo:
The Wyner-Ziv video coding (WZVC) rate distortion performance is highly dependent on the quality of the side information, an estimation of the original frame, created at the decoder. This paper, characterizes the WZVC efficiency when motion compensated frame interpolation (MCFI) techniques are used to generate the side information, a difficult problem in WZVC especially because the decoder only has available some reference decoded frames. The proposed WZVC compression efficiency rate model relates the power spectral of the estimation error to the accuracy of the MCFI motion field. Then, some interesting conclusions may be derived related to the impact of the motion field smoothness and the correlation to the true motion trajectories on the compression performance.