954 resultados para video images
Resumo:
Cognitive modelling of phenomena in clinical practice allows the operationalisation of otherwise diffuse descriptive terms such as craving or flashbacks. This supports the empirical investigation of the clinical phenomena and the development of targeted treatment interventions. This paper focuses on the cognitive processes underpinning craving, which is recognised as a motivating experience in substance dependence. We use a high-level cognitive architecture, Interacting Cognitive Subsystems (ICS), to compare two theories of craving: Tiffany's theory, centred on the control of automated action schemata, and our own Elaborated Intrusion theory of craving. Data from a questionnaire study of the subjective aspects of everyday desires experienced by a large non-clinical population are presented. Both the data and the high-level modelling support the central claim of the Elaborated Intrusion theory that imagery is a key element of craving, providing the subjective experience and mediating much of the associated disruption of concurrent cognition.
Resumo:
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.
Resumo:
In this study, the authors propose a novel video stabilisation algorithm for mobile platforms with moving objects in the scene. The quality of videos obtained from mobile platforms, such as unmanned airborne vehicles, suffers from jitter caused by several factors. In order to remove this undesired jitter, the accurate estimation of global motion is essential. However it is difficult to estimate global motions accurately from mobile platforms due to increased estimation errors and noises. Additionally, large moving objects in the video scenes contribute to the estimation errors. Currently, only very few motion estimation algorithms have been developed for video scenes collected from mobile platforms, and this paper shows that these algorithms fail when there are large moving objects in the scene. In this study, a theoretical proof is provided which demonstrates that the use of delta optical flow can improve the robustness of video stabilisation in the presence of large moving objects in the scene. The authors also propose to use sorted arrays of local motions and the selection of feature points to separate outliers from inliers. The proposed algorithm is tested over six video sequences, collected from one fixed platform, four mobile platforms and one synthetic video, of which three contain large moving objects. Experiments show our proposed algorithm performs well to all these video sequences.
Resumo:
The automatic extraction of road features from remote sensed images has been a topic of great interest within the photogrammetric and remote sensing communities for over 3 decades. Although various techniques have been reported in the literature, it is still challenging to efficiently extract the road details with the increasing of image resolution as well as the requirement for accurate and up-to-date road data. In this paper, we will focus on the automatic detection of road lane markings, which are crucial for many applications, including lane level navigation and lane departure warning. The approach consists of four steps: i) data preprocessing, ii) image segmentation and road surface detection, iii) road lane marking extraction based on the generated road surface, and iv) testing and system evaluation. The proposed approach utilized the unsupervised ISODATA image segmentation algorithm, which segments the image into vegetation regions, and road surface based only on the Cb component of YCbCr color space. A shadow detection method based on YCbCr color space is also employed to detect and recover the shadows from the road surface casted by the vehicles and trees. Finally, the lane marking features are detected from the road surface using the histogram clustering. The experiments of applying the proposed method to the aerial imagery dataset of Gympie, Queensland demonstrate the efficiency of the approach.
Resumo:
Scalable video coding of H.264/AVC standard enables adaptive and flexible delivery for multiple devices and various network conditions. Only a few works have addressed the influence of different scalability parameters (frame rate, spatial resolution, and SNR) on the user perceived quality within a limited scope. In this paper, we have conducted an experiment of subjective quality assessment for video sequences encoded with H.264/SVC to gain a better understanding of the correlation between video content and UPQ at all scalable layers and the impact of rate-distortion method and different scalabilities on bitrate and UPQ. Findings from this experiment will contribute to a user-centered design of adaptive delivery of scalable video stream.
Resumo:
Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.
Resumo:
With the increasing resolution of remote sensing images, road network can be displayed as continuous and homogeneity regions with a certain width rather than traditional thin lines. Therefore, road network extraction from large scale images refers to reliable road surface detection instead of road line extraction. In this paper, a novel automatic road network detection approach based on the combination of homogram segmentation and mathematical morphology is proposed, which includes three main steps: (i) the image is classified based on homogram segmentation to roughly identify the road network regions; (ii) the morphological opening and closing is employed to fill tiny holes and filter out small road branches; and (iii) the extracted road surface is further thinned by a thinning approach, pruned by a proposed method and finally simplified with Douglas-Peucker algorithm. Lastly, the results from some QuickBird images and aerial photos demonstrate the correctness and efficiency of the proposed process.
Resumo:
Surveillance systems such as object tracking and abandoned object detection systems typically rely on a single modality of colour video for their input. These systems work well in controlled conditions but often fail when low lighting, shadowing, smoke, dust or unstable backgrounds are present, or when the objects of interest are a similar colour to the background. Thermal images are not affected by lighting changes or shadowing, and are not overtly affected by smoke, dust or unstable backgrounds. However, thermal images lack colour information which makes distinguishing between different people or objects of interest within the same scene difficult. ----- By using modalities from both the visible and thermal infrared spectra, we are able to obtain more information from a scene and overcome the problems associated with using either modality individually. We evaluate four approaches for fusing visual and thermal images for use in a person tracking system (two early fusion methods, one mid fusion and one late fusion method), in order to determine the most appropriate method for fusing multiple modalities. We also evaluate two of these approaches for use in abandoned object detection, and propose an abandoned object detection routine that utilises multiple modalities. To aid in the tracking and fusion of the modalities we propose a modified condensation filter that can dynamically change the particle count and features used according to the needs of the system. ----- We compare tracking and abandoned object detection performance for the proposed fusion schemes and the visual and thermal domains on their own. Testing is conducted using the OTCBVS database to evaluate object tracking, and data captured in-house to evaluate the abandoned object detection. Our results show that significant improvement can be achieved, and that a middle fusion scheme is most effective.
Resumo:
This article describes a project to unwrap an ancient Egyptian mummy using X-ray computed tomography (CT). About 600 X-ray CT images were obtained through the mummified body of a female named Tjetmutjengebtiu (or Jeni for short), who was a singer in the great temple of Karnak in Egypt during the 22nd dynasty (c. 945-715 BC). The X-ray CT images reveal details of the remains of body organs, wrappings and jewellery. 3D reconstructions of Jeni’s teeth suggest that she was probably only around 20 years old when she died, although the cause of death cannot be ascertained from the CT scans. The CT images were used to build a 3D model of Jeni’s head which enabled an artist to paint a picture of what Jeni may have looked like during life. A PowerPoint presentation and movie clips are provided as supplementary material that may be useful for teaching.
Resumo:
what was silent will speak, what is closed will open and will take on a voice Paul Virilio The fundamental problem in dealing with the digital is that we are forced to contend with a fundamental deconstruction of form. A deconstruction that renders our content and practice into a single state that can be openly and easily manipulated, reimagined and mashed together in rapid time to create completely unique artefacts and potentially unwranglable jumbles of data. Once our work is essentially broken down into this series of number sequences, (or bytes), our sound, images, movies and documents – our memory files - we are left with nothing but choice….and this is the key concern. This absence of form transforms our work into new collections and poses unique challenges for the artist seeking opportunities to exploit the potential of digital deconstruction. It is through this struggle with the absent form that we are able to thoroughly explore the latent potential of content, exploit modern abstractions of time and devise approaches within our practice that actively deal with the digital as an essential matter of course.
Resumo:
Introduction. Ideally after selective thoracic fusion for Lenke Class IC (i.e. major thoracic / secondary lumbar) curves, the lumbar spine will spontaneously accommodate to the corrected position of the thoracic curve, thereby achieving a balanced spine, avoiding the need for fusion of lumbar spinal segments1. The purpose of this study was to evaluate the behaviour of the lumbar curve in Lenke IC class adolescent idiopathic scoliosis (AIS) following video-assisted thoracoscopic spinal fusion and instrumentation (VATS) of the major thoracic curve. Methods. A retrospective review of 22 consecutive patients with AIS who underwent VATS by a single surgeon was conducted. The results were compared to published literature examining the behaviour of the secondary lumbar curve where other surgical approaches were employed. Results. Twenty-two patients (all female) with AIS underwent VATS. All major thoracic curves were right convex. The average age at surgery was 14 years (range 10 to 22 years). On average 6.7 levels (6 to 8) were instrumented. The mean follow-up was 25.1 months (6 to 36). The pre-operative major thoracic Cobb angle mean was 53.8° (40° to 75°). The pre-operative secondary lumbar Cobb angle mean was 43.9° (34° to 55°). On bending radiographs, the secondary curve corrected to 11.3° (0° to 35°). The rib hump mean measurement was 15.0° (7° to 21°). At latest follow-up the major thoracic Cobb angle measured on average 27.2° (20° to 41°) (p<0.001 – univariate ANOVA) and the mean secondary lumbar curve was 27.3° (15° to 42°) (p<0.001). This represented an uninstrumented secondary curve correction factor of 37.8%. The mean rib hump measured was 6.5° (2° to 15°) (p<0.001). The results above were comparable to published series when open surgery was performed. Discussion. VATS is an effective method of correcting major thoracic curves with secondary lumbar curves. The behaviour of the secondary lumbar curve is consistent with published series when open surgery, both anterior and posterior, is performed.
Resumo:
One of the primary treatment goals of adolescent idiopathic scoliosis (AIS) surgery is to achieve maximum coronal plane correction while maintaining coronal balance. However maintaining or restoring sagittal plane spinal curvature has become increasingly important in maintaining the long-term health of the spine. Patients with AIS are characterised by pre-operative thoracic hypokyphosis, and it is generally agreed that operative treatment of thoracic idiopathic scoliosis should aim to restore thoracic kyphosis to normal values while maintaining lumbar lordosis and good overall sagittal balance. The aim of this study was to evaluate CT sagittal plane parameters, with particular emphasis on thoracolumbar junctional alignment, in patients with AIS who underwent Video Assisted Thoracoscopic Spinal Fusion and Instrumentation (VATS). This study concluded that video-assisted thoracoscopic spinal fusion and instrumentation reliably increases thoracic kyphosis while preserving junctional alignment and lumbar lordosis in thoracic AIS.
Resumo:
Interactive documents for use with the World Wide Web have been developed for viewing multi-dimensional radiographic and visual images of human anatomy, derived from the Visible Human Project. Emphasis has been placed on user-controlled features and selections. The purpose was to develop an interface which was independent of host operating system and browser software which would allow viewing of information by multiple users. The interfaces were implemented using HyperText Markup Language (HTML) forms, C programming language and Perl scripting language. Images were pre-processed using ANALYZE and stored on a Web server in CompuServe GIF format. Viewing options were included in the document design, such as interactive thresholding and two-dimensional slice direction. The interface is an example of what may be achieved using the World Wide Web. Key applications envisaged for such software include education, research and accessing of information through internal databases and simultaneous sharing of images by remote computers by health personnel for diagnostic purposes.
Resumo:
Intelligent surveillance systems typically use a single visual spectrum modality for their input. These systems work well in controlled conditions, but often fail when lighting is poor, or environmental effects such as shadows, dust or smoke are present. Thermal spectrum imagery is not as susceptible to environmental effects, however thermal imaging sensors are more sensitive to noise and they are only gray scale, making distinguishing between objects difficult. Several approaches to combining the visual and thermal modalities have been proposed, however they are limited by assuming that both modalities are perfuming equally well. When one modality fails, existing approaches are unable to detect the drop in performance and disregard the under performing modality. In this paper, a novel middle fusion approach for combining visual and thermal spectrum images for object tracking is proposed. Motion and object detection is performed on each modality and the object detection results for each modality are fused base on the current performance of each modality. Modality performance is determined by comparing the number of objects tracked by the system with the number detected by each mode, with a small allowance made for objects entering and exiting the scene. The tracking performance of the proposed fusion scheme is compared with performance of the visual and thermal modes individually, and a baseline middle fusion scheme. Improvement in tracking performance using the proposed fusion approach is demonstrated. The proposed approach is also shown to be able to detect the failure of an individual modality and disregard its results, ensuring performance is not degraded in such situations.