791 resultados para vibration-based structural health monitoring
Resumo:
Alcohol consumption has a long-standing tradition in the United States Air Force (USAF). From squadron bars to officers and enlisted clubs, alcohol has been used in social settings to increase morale and also as a way to help decrease the stress of military operations. Surveys have demonstrated that the USAF has more than double the percentage of heavy drinkers than the US population. More than one-third of the Air Force reports binge drinking in the last month while only six percent of the nation reports the same consumption pattern.^ However, alcohol has a significant harmful health effect if consumed in excess. As part of an overall prevention and treatment program aimed at curbing the harmful effects of alcohol consumption, the USAF uses the Alcohol Use Disorder Identification Test (AUDIT) to screen for high-risk alcohol consumption patterns before alcohol disorder and disability occur. All Air Force active-duty members are required to complete a yearly Preventive Health Assessment questionnaire. Various health topics are included in this questionnaire including nutrition, exercise, tobacco use, family history, mental health and alcohol use. While this questionnaire has been available in a web-based format for several years, mandatory use was not implemented until 2009.^ Although the AUDIT was selected due to its effectiveness in assessing high-risk alcohol consumption in other populations, its effectiveness in the Air Force population had not been studied previously. In order to assess the sensitivity, specificity, and positive predictive value of this screening tool, the Air Force Web-based Preventive Health Assessment alcohol screening results were compared to whether any alcohol-related diagnosis was made from January 1, 2009 to March 31, 2010.^ While the AUDIT has previously been shown to have a high sensitivity and specificity, the Air Force screening values were 27.9% and 93.0% respectively. Positive predictive value was only 4.9%. With the screening statistics found, less than one-third of those having an alcohol disorder will be found with this screening tool and only 1 out of 20 Airmen who require further evaluation actually have an alcohol-related diagnosis.^
Resumo:
This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.
Resumo:
Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained.
Resumo:
Los Sistemas de SHM o de monitorización de la integridad estructural surgen ante la necesidad de mejorar los métodos de evaluación y de test no destructivos convencionales. De esta manera, se puede tener controlado todo tipo de estructuras en las cuales su correcto estado o funcionamiento suponga un factor crítico. Un Sistema SHM permite analizar una estructura concreta capturando de manera periódica el estado de la integridad estructural, que en este proyecto se ha aplicado a estructuras aeronáuticas. P.A.M.E.L.A. (Phase Array Monitoring for Enhanced Life Assessment) es la denominación utilizada para definir una serie de equipos electrónicos para Sistemas SHM desarrollados por AERNOVA y los Grupos de Diseño Electrónico de las universidades UPV/EHU y UPM. Los dispositivos P.A.M.E.L.A. originalmente no cuentan con tecnología Wi-Fi, por lo que incorporan un módulo hardware independiente que se encarga de las comunicaciones inalámbricas, a los que se les denomina Nodos. Estos Nodos poseen un Sistema Operativo propio y todo lo necesario para administrar y organizar la red Mallada Wi-Fi. De esta manera se obtiene una red mallada inalámbrica compuesta por Nodos que interconectan los Sistemas SHM y que se encargan de transmitir los datos a los equipos que procesan los resultados adquiridos por P.A.M.E.L.A. Los Nodos son dispositivos empotrados que llevan instalados un firmware basado en una distribución de Linux para Nodos (o Routers), llamado Openwrt. Que para disponer de una red mallada necesitan de un protocolo orientado a este tipo de redes. Entre las opciones de protocolo más destacadas se puede mencionar: DSDV (Destination Sequenced Distance Vector), OLSR (Optimized Link State Routing), B.A.T.M.A.N-Adv (Better Approach To Mobile Adhoc Networking Advance), BMX (una versión de B.A.T.M.A.N-Adv), AODV (Ad hoc On-Demand Distance Vector) y el DSR (Dynamic Source Routing). Además de la existencia de protocolos orientados a las redes malladas, también hay organizaciones que se dedican a desarrollar firmware que los utilizan, como es el caso del firmware llamado Nightwing que utiliza BMX, Freifunk que utiliza OLSR o Potato Mesh que utiliza B.A.T.M.A.N-Adv. La ventaja de estos tres firmwares mencionados es que las agrupaciones que las desarrollan proporcionan las imágenes precompiladas del sistema,listas para cargarlas en distintos modelos de Nodos. En este proyecto se han instalado las imágenes en los Nodos y se han probado los protocolos BMX, OLSR y B.A.T.M.A.N.-Adv. Concluyendo que la red gestionada por B.A.T.M.A.N.-Adv era la que mejor rendimiento obtenía en cuanto a estabilidad y ancho de banda. Después de haber definido el protocolo a usar, se procedió a desarrollar una distribución basada en Openwrt, que utilice B.A.T.M.A.N.-Adv para crear la red mallada, pero que se ajuste mejor a las necesidades del proyecto, ya que Nightwing, Freifunk y Potato Mesh no lo hacían. Además se implementan aplicaciones en lenguaje ANSI C y en LabVIEW para interactuar con los Nodos y los Sistemas SHM. También se procede a hacer alguna modificación en el Hardware de P.A.M.E.L.A. y del Nodo para obtener una mejor integración entre los dos dispositivos. Y por ultimo, se prueba la transferencia de datos de los Nodos en distintos escenarios. ABSTRACT. Structural Health Monitoring (SHM) systems arise from the need of improving assessment methods and conventional nondestructive tests. Critical structures can be monitored using SHM. A SHM system analyzes periodically a specific structure capturing the state of structural integrity. The aim of this project is to contribute in the implementation of Mesh network for SHM system in aircraft structures. P.A.M.E.L.A. (Phase Array Monitoring for Enhanced Life Assessment) is the name for electronic equipment developed by AERNOVA, the Electronic Design Groups of university UPV/EHU and the Instrumentation and Applied Acoustics research group from UPM. P.A.M.E.L.A. devices were not originally equipped with Wi-Fi interface. In this project a separate hardware module that handles wireless communications (nodes) has been added. The nodes include an operating system for manage the Wi-Fi Mesh Network and they form the wireless mesh network to link SHM systems with monitoring equipment. Nodes are embedded devices with an installed firmware based on special Linux distribution used in routers or nodes, called OpenWRT. They need a Mesh Protocol to stablish the network. The most common protocols options are: DSDV (Destination Sequenced Distance Vector), OLSR (Optimized Link State Routing), BATMAN-Adv (Better Approach To Mobile Ad-hoc Networking Advance), BMX (a version of BATMAN-Adv) AODV (Ad hoc on-Demand Distance Vector) and DSR (Dynamic Source Routing). In addition, there are organizations that are dedicated to develope firmware using these Mesh Protocols, for instance: Nightwing uses BMX, Freifunk use OLSR and Potato Mesh uses BATMAN-Adv. The advantage of these three firmwares is that these groups develop pre-compiled images of the system ready to be loaded in several models of Nodes. In this project the images were installed in the nodes. In this way, BMX, OLSR and BATMAN-Adv have been tested. We conclude that the protocol BATMAN-Adv has better performance in terms of stability and bandwidth. After choosing the protocol, the objective was to develop a distribution based on OpenWRT, using BATMAN-Adv to create the mesh network. This distribution is fitted to the requirements of this project. Besides, in this project it has been developed applications in C language and LabVIEW to interact with the Nodes and the SHM systems. The project also address some modifications to the PAMELA hardware and the Node, for better integration between both elements. Finally, data transfer tests among the different nodes in different scenarios has been carried out.
Resumo:
The increase in CPU power and screen quality of todays smartphones as well as the availability of high bandwidth wireless networks has enabled high quality mobile videoconfer- encing never seen before. However, adapting to the variety of devices and network conditions that come as a result is still not a trivial issue. In this paper, we present a multiple participant videoconferencing service that adapts to different kind of devices and access networks while providing an stable communication. By combining network quality detection and the use of a multipoint control unit for video mixing and transcoding, desktop, tablet and mobile clients can participate seamlessly. We also describe the cost in terms of bandwidth and CPU usage of this approach in a variety of scenarios.
Resumo:
This paper presents a time-domain stochastic system identification method based on Maximum Likelihood Estimation and the Expectation Maximization algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated applying the proposed identification method to a set of 100 simulated cases. The numerical results show that the proposed method estimates all the modal parameters reasonably well in the presence of 30% measurement noise even. Finally, advantages and disadvantages of the method have been discussed.
Resumo:
The work presented in this paper comprises the methodology and results of a pilot study on the feasibility of a wireless health monitoring system designed under main EU challenges for the promotion of healthy and active ageing. The system is focused on health assessment, prevention and lifestyle promotion of elderly people. Over a hundred participants including elderly users and caregivers tested the system in four pilot sites across Europe. Tests covered several scenarios in senior centers and real home environments, including performance and usability assessment. Results indicated strong satisfactoriness on usability, usefulness and user friendliness, and the acceptable level of reliability obtained supports future investigation on the same direction for further improvement and transfer of conclusions to the real world in the healthcare delivery.
Resumo:
Cualquier estructura vibra según unas frecuencias propias definidas por sus parámetros modales (frecuencias naturales, amortiguamientos y formas modales). A través de las mediciones de la vibración en puntos clave de la estructura, los parámetros modales pueden ser estimados. En estructuras civiles, es difícil excitar una estructura de manera controlada, por lo tanto, las técnicas que implican la estimación de los parámetros modales sólo registrando su respuesta son de vital importancia para este tipo de estructuras. Esta técnica se conoce como Análisis Modal Operacional (OMA). La técnica del OMA no necesita excitar artificialmente la estructura, atendiendo únicamente a su comportamiento en servicio. La motivación para llevar a cabo pruebas de OMA surge en el campo de la Ingeniería Civil, debido a que excitar artificialmente con éxito grandes estructuras no sólo resulta difícil y costoso, sino que puede incluso dañarse la estructura. Su importancia reside en que el comportamiento global de una estructura está directamente relacionado con sus parámetros modales, y cualquier variación de rigidez, masa o condiciones de apoyo, aunque sean locales, quedan reflejadas en los parámetros modales. Por lo tanto, esta identificación puede integrarse en un sistema de vigilancia de la integridad estructural. La principal dificultad para el uso de los parámetros modales estimados mediante OMA son las incertidumbres asociadas a este proceso de estimación. Existen incertidumbres en el valor de los parámetros modales asociadas al proceso de cálculo (internos) y también asociadas a la influencia de los factores ambientales (externas), como es la temperatura. Este Trabajo Fin de Máster analiza estas dos fuentes de incertidumbre. Es decir, en primer lugar, para una estructura de laboratorio, se estudian y cuantifican las incertidumbres asociadas al programa de OMA utilizado. En segundo lugar, para una estructura en servicio (una pasarela de banda tesa), se estudian tanto el efecto del programa OMA como la influencia del factor ambiental en la estimación de los parámetros modales. Más concretamente, se ha propuesto un método para hacer un seguimiento de las frecuencias naturales de un mismo modo. Este método incluye un modelo de regresión lineal múltiple que permite eliminar la influencia de estos agentes externos. A structure vibrates according to some of its vibration modes, defined by their modal parameters (natural frequencies, damping ratios and modal shapes). Through the measurements of the vibration at key points of the structure, the modal parameters can be estimated. In civil engineering structures, it is difficult to excite structures in a controlled manner, thus, techniques involving output-only modal estimation are of vital importance for these structure. This techniques are known as Operational Modal Analysis (OMA). The OMA technique does not need to excite artificially the structure, this considers its behavior in service only. The motivation for carrying out OMA tests arises in the area of Civil Engineering, because successfully artificially excite large structures is difficult and expensive. It also may even damage the structure. The main goal is that the global behavior of a structure is directly related to their modal parameters, and any variation of stiffness, mass or support conditions, although it is local, is also reflected in the modal parameters. Therefore, this identification may be within a Structural Health Monitoring system. The main difficulty for using the modal parameters estimated by an OMA is the uncertainties associated to this estimation process. Thus, there are uncertainties in the value of the modal parameters associated to the computing process (internal) and the influence of environmental factors (external), such as the temperature. This Master’s Thesis analyzes these two sources of uncertainties. That is, firstly, for a lab structure, the uncertainties associated to the OMA program used are studied and quantified. Secondly, for an in-service structure (a stress-ribbon footbridge), both the effect of the OMA program and the influence of environmental factor on the modal parameters estimation are studied. More concretely, a method to track natural frequencies of the same mode has been proposed. This method includes a multiple linear regression model that allows to remove the influence of these external agents.
Resumo:
An impedance-based midspan debonding identification method for RC beams strengthened with FRP strips is presented in this paper using piezoelectric ceramic (PZT) sensor?actuators. To reach this purpose, firstly, a two-dimensional electromechanical impedance model is proposed to predict the electrical admittance of the PZT transducer bonded to the FRP strips of an RC beam. Considering the impedance is measured in high frequencies, a spectral element model of the bonded-PZT?FRP strengthened beam is developed. This model, in conjunction with experimental measurements of PZT transducers, is used to present an updating methodology to quantitatively detect interfacial debonding of these kinds of structures. To improve the performance and accuracy of the detection algorithm in a challenging problem such as ours, the structural health monitoring approach is solved with an ensemble process based on particle of swarm. An adaptive mesh scheme has also been developed to increase the reliability in locating the area in which debonding initiates. Predictions carried out with experimental results have showed the effectiveness and potential of the proposed method to detect prematurely at its earliest stages a critical failure mode such as that due to midspan debonding of the FRP strip.
Resumo:
The application of the Electro-Mechanical Impedance (EMI) method for damage detection in Structural Health Monitoring has noticeable increased in recent years. EMI method utilizes piezoelectric transducers for directly measuring the mechanical properties of the host structure, obtaining the so called impedance measurement, highly influenced by the variations of dynamic parameters of the structure. These measurements usually contain a large number of frequency points, as well as a high number of dimensions, since each frequency range swept can be considered as an independent variable. That makes this kind of data hard to handle, increasing the computational costs and being substantially time-consuming. In that sense, the Principal Component Analysis (PCA)-based data compression has been employed in this work, in order to enhance the analysis capability of the raw data. Furthermore, a Support Vector Machine (SVM), which has been widespread used in machine learning and pattern recognition fields, has been applied in this study in order to model any possible existing pattern in the PCAcompress data, using for that just the first two Principal Components. Different known non-damaged and damaged measurements of an experimental tested beam were used as training input data for the SVM algorithm, using as test input data the same amount of cases measured in beams with unknown structural health conditions. Thus, the purpose of this work is to demonstrate how, with a few impedance measurements of a beam as raw data, its healthy status can be determined based on pattern recognition procedures.
Resumo:
Damage identification under real operating conditions of the structure during its daily use would be suitable and attractive to civil engineers due to the difficulty and problems of carrying out controlled forced excitation tests on this kind of structures. In this case, output-only response measurements would be available, and an output-only damage identification procedure should be implemented. Transmissibility, defined on an output-to-output relationship, is getting increased attention in damage detection applications because of its dependence with output-only data and its sensitivity to local structural changes. In this paper, a method based on the power spectrum density transmissibility (PSDT) is proposed to detect structural damage.
Resumo:
Una estructura vibra con la suma de sus infinitos modos de vibración, definidos por sus parámetros modales (frecuencias naturales, formas modales y coeficientes de amortiguamiento). Estos parámetros se pueden identificar a través del Análisis Modal Operacional (OMA). Así, un equipo de investigación de la Universidad Politécnica de Madrid ha identificado las propiedades modales de un edificio de hormigón armado en Madrid con el método Identificación de los sub-espacios estocásticos (SSI). Para completar el estudio dinámico de este edificio, se ha desarrollado un modelo de elementos finitos (FE) de este edificio de 19 plantas. Este modelo se ha calibrado a partir de su comportamiento dinámico obtenido experimentalmente a través del OMA. Los objetivos de esta tesis son; (i) identificar la estructura con varios métodos de SSI y el uso de diferentes ventanas de tiempo de tal manera que se cuantifican incertidumbres de los parámetros modales debidos al proceso de estimación, (ii) desarrollar FEM de este edificio y calibrar este modelo a partir de su comportamiento dinámico, y (iii) valorar la bondad del modelo. Los parámetros modales utilizados en esta calibración han sido; espesor de las losas, densidades de los materiales, módulos de elasticidad, dimensiones de las columnas y las condiciones de contorno de la cimentación. Se ha visto que el modelo actualizado representa el comportamiento dinámico de la estructura con una buena precisión. Por lo tanto, este modelo puede utilizarse dentro de un sistema de monitorización estructural (SHM) y para la detección de daños. En el futuro, podrá estudiar la influencia de los agentes medioambientales, tales como la temperatura o el viento, en los parámetros modales. A structure vibrates according to the sum of its vibration modes, defined by their modal parameters (natural frequencies, damping ratios and modal shapes). These parameters can be identified through Operational Modal Analysis (OMA). Thus, a research team of the Technical University of Madrid has identified the modal properties of a reinforced-concrete-frame building in Madrid using the Stochastic Subspace Identification (SSI) method and a time domain technique for the OMA. To complete the dynamic study of this building, a finite element model (FE) of this 19-floor building has been developed throughout this thesis. This model has been updated from its dynamic behavior identified by the OMA. The objectives of this thesis are to; (i) identify the structure with several SSI methods and using different time blocks in such a way that uncertainties due to the modal parameter estimation are quantified, (ii) develop a FEM of this building and tune this model from its dynamic behavior, and (iii) Assess the quality of the model, the modal parameters used in this updating process have been; thickness of slabs, material densities, modulus of elasticity, column dimensions and foundation boundary conditions. It has been shown that the final updated model represents the structure with a very good accuracy. Thus, this model might be used within a structural health monitoring framework (SHM). The study of the influence of changing environmental factors (such as temperature or wind) on the model parameters might be considered as a future work.
Resumo:
PAMELA (Phased Array Monitoring for Enhanced Life Assessment) SHMTM System is an integrated embedded ultrasonic guided waves based system consisting of several electronic devices and one system manager controller. The data collected by all PAMELA devices in the system must be transmitted to the controller, who will be responsible for carrying out the advanced signal processing to obtain SHM maps. PAMELA devices consist of hardware based on a Virtex 5 FPGA with a PowerPC 440 running an embedded Linux distribution. Therefore, PAMELA devices, in addition to the capability of performing tests and transmitting the collected data to the controller, have the capability of perform local data processing or pre-processing (reduction, normalization, pattern recognition, feature extraction, etc.). Local data processing decreases the data traffic over the network and allows CPU load of the external computer to be reduced. Even it is possible that PAMELA devices are running autonomously performing scheduled tests, and only communicates with the controller in case of detection of structural damages or when programmed. Each PAMELA device integrates a software management application (SMA) that allows to the developer downloading his own algorithm code and adding the new data processing algorithm to the device. The development of the SMA is done in a virtual machine with an Ubuntu Linux distribution including all necessary software tools to perform the entire cycle of development. Eclipse IDE (Integrated Development Environment) is used to develop the SMA project and to write the code of each data processing algorithm. This paper presents the developed software architecture and describes the necessary steps to add new data processing algorithms to SMA in order to increase the processing capabilities of PAMELA devices.An example of basic damage index estimation using delay and sum algorithm is provided.
Resumo:
Es conocido que las dimensiones de los puentes de ferrocarril han ido cambiando debido a las estrictas condiciones de trazado impuestas en las líneas de alta velocidad. Además, la creciente preocupación de la sociedad por cuidar y proteger el medio ambiente, reflejado en la correspondiente normativa, ha generado nuevos condicionantes en el diseño de estas infraestructuras. En concreto, se ha limitado el movimiento de grandes volúmenes de terreno particularmente en los espacios protegidos. Por estas razones, hoy en día se proyectan y construyen puentes de ferrocarril más altos y más largos en todo el mundo. En España se han construido varios viaductos de pilas altas para líneas de alta velocidad. Ejemplos de estas infraestructuras son el Viaducto O’Eixo y el Viaducto de Barbantiño, situados en la línea de alta velocidad Madrid-Galicia, Estos viaductos altos se caracterizan por tener una mayor flexibilidad lateral y una frecuencia fundamental de oscilación baja, de hasta 0.2 Hz. La respuesta dinámica de este tipo de estructura puede aumentar como consecuencia de la aproximación entre la frecuencias propias de la misma y las de excitación debidas al paso del tren y a la acción del viento. Por lo tanto, estas estructuras pueden presentar problemas a la hora de cumplir con las limitaciones impuestas en las normas de diseño de puentes de ferrocarril, y otras, para garantizar la seguridad del tráfico y el confort de los viajeros. La respuesta dinámica lateral de viaductos de pilas altas no ha sido suficientemente estudiada en la literatura científica. Se pueden intuir varios de los motivos para explicar esta carencia. El primero es la relativamente reciente aparición de este tipo de viaductos asociados al desarrollo de la alta velocidad. Por otro lado, se hace necesario, para estudiar este tema, construir nuevos modelos numéricos adecuados para el estudio de la interacción dinámica lateral del puente y del tren. La interacción entre el puente y un tren viajando sobre él es un problema dinámico no lineal, dependiente del tiempo y de acoplamiento entre los dos subsistemas que intervienen (vehículo y puente). Los dos subsistemas, que pueden ser modelados como estructuras elásticas, interaccionan el uno con el otro a través de las fuerzas de contacto, que tiene una marcada naturaleza no lineal por el rozamiento entre rueda y carril, y por la geometría de los perfiles de estos dos elementos en contacto. En esta tesis, se desarrolla la formulación completa de un modelo no lineal de interacción tren-vía-puente-viento que reproduce adecuadamente las fuerzas laterales de contacto rueda-carril, fuerzas que van a tener una gran influencia en los índices de seguridad del tráfico. Este modelo se ha validado a partir de casos resueltos en la literatura científica, y de medidas experimentales tomadas en eventos dinámicos ocurridos en los viaductos de Arroyo de Valle y Arroyo de las Piedras. Puentes altos que han estado monitorizados en servicio durante dos años. En los estudios realizados en este trabajo, se cuantifican, empleando el modelo construido, los niveles de seguridad del tráfico y de confort de los pasajeros de trenes ligeros de alta velocidad, como el tren articulado AVE S-100, que viajan sobre viaductos altos sometidos, o no, a fuertes vientos laterales racheados. Finalmente, se ha obtenido el grado de mejora de la seguridad del tráfico y del confort de los viajeros, cuando se emplean pantallas anti-viento en el tablero y amortiguadores de masa sintonizados en la cabeza de las pilas de un viaducto alto. Resultando, el uso simultaneo de estos dos dispositivos (pantallas y amortiguadores de masa), en puentes altos de líneas de alta velocidad, una opción a considerar en la construcción de estas estructuras para elevar significativamente el nivel de servicio de las mismas. It is known that dimensions of railway bridges have been changing due to the strict high-speed lines layout parameters. Moreover, the growing concern of society to take care of and protect the environment, reflected in the corresponding regulations, has created new environment requirements for the design of these infrastructures. Particularly, the mentioned regulations do not allow designers to move far from terrain to build these railway lines. Due to all these reasons, longer and higher railway bridges are being designed and built around the world. In Spain, several high pier railway viaducts have been built for high speed lines. Barbantiño Viaduct and Eixo Viaduct, belonging to the Madrid-Galicia high speed line, are examples of this kind of structures. These high viaducts have great lateral flexibility and a low fundamental vibration frequency of down to 0.2 Hz. The dynamic response of high speed railway bridges may increase because of the approximation between the natural viaduct frequencies and the excitation ones due to the train travel and the wind action. Therefore, this bridge response could not satisfy the serviceability limits states, for traffic safety and for passenger comfort, considered by the design standards of high speed bridges. It is difficult to find papers in the scientific literature about the lateral response of high-speed trains travel over long viaducts with high piers. Several reasons could explain this issue. On one hand, the construction of this kind of viaduct is relatively recent and it is associated to the development of the high speed railway. On the other hand, in order to study the dynamic lateral interaction between the train and the high bridge, it is necessary to build new numerical and complex models. The interaction between the bridge-track subsystem and the vehicle subsystem travelling over the bridge is a coupling, nonlinear and time dependent problem. Both subsystems, train and bridge, which can be modelled as elastic structures, interact each other through the contact forces. These forces have a strong nonlinear nature due to the friction and the geometry of rail and wheel profiles. In this thesis, the full formulation of a train-track-bridge-wind nonlinear interaction model is developed. This model can reproduce properly the lateral contact wheel-rail forces, which have a great influence on traffic safety indices. The validation of the model built has been reached through interaction solved cases found in the scientific literature and experimental measures taken in dynamic events which happened at Arroyo de las Piedras and Arroyo del Valle Viaducts. These high bridges have been controlled during two years of service by means of structural health monitoring. In the studies carried out for this thesis, the levels of traffic safety and passenger comfort are quantified using the interaction model built, in the cases of high speed and light trains, as AVE S-100, travelling over high pier bridges and with or without lateral turbulent winds acting. Finally, the improvement rate of the traffic safety and passenger comfort has been obtained, when wind barriers are used at the bridge deck and tuned mass dampers are installed at the pier heads of a high viaduct. The installation of both devices, wind barriers and tuned mass damper, at the same time, turned out to be a good option to be considered in the design of high pier railway viaducts, to improve significantly the serviceability level of this kind of structures.
Resumo:
Una de las barreras para la aplicación de las técnicas de monitorización de la integridad estructural (SHM) basadas en ondas elásticas guiadas (GLW) en aeronaves es la influencia perniciosa de las condiciones ambientales y de operación (EOC). En esta tesis se ha estudiado dicha influencia y la compensación de la misma, particularizando en variaciones del estado de carga y temperatura. La compensación de dichos efectos se fundamenta en Redes Neuronales Artificiales (ANN) empleando datos experimentales procesados con la Transformada Chirplet. Los cambios en la geometría y en las propiedades del material respecto al estado inicial de la estructura (lo daños) provocan cambios en la forma de onda de las GLW (lo que denominamos característica sensible al daño o DSF). Mediante técnicas de tratamiento de señal se puede buscar una relación entre dichas variaciones y los daños, esto se conoce como SHM. Sin embargo, las variaciones en las EOC producen también cambios en los datos adquiridos relativos a las GLW (DSF) que provocan errores en los algoritmos de diagnóstico de daño (SHM). Esto sucede porque las firmas de daño y de las EOC en la DSF son del mismo orden. Por lo tanto, es necesario cuantificar y compensar el efecto de las EOC sobre la GLW. Si bien existen diversas metodologías para compensar los efectos de las EOC como por ejemplo “Optimal Baseline Selection” (OBS) o “Baseline Signal Stretching” (BSS), estas, se emplean exclusivamente en la compensación de los efectos térmicos. El método propuesto en esta tesis mezcla análisis de datos experimentales, como en el método OBS, y modelos basados en Redes Neuronales Artificiales (ANN) que reemplazan el modelado físico requerido por el método BSS. El análisis de datos experimentales consiste en aplicar la Transformada Chirplet (CT) para extraer la firma de las EOC sobre la DSF. Con esta información, obtenida bajo diversas EOC, se entrena una ANN. A continuación, la ANN actuará como un interpolador de referencias de la estructura sin daño, generando información de referencia para cualquier EOC. La comparación de las mediciones reales de la DSF con los valores simulados por la ANN, dará como resultado la firma daño en la DSF, lo que permite el diagnóstico de daño. Este esquema se ha aplicado y verificado, en diversas EOC, para una estructura unidimensional con un único camino de daño, y para una estructura representativa de un fuselaje de una aeronave, con curvatura y múltiples elementos rigidizadores, sometida a un estado de cargas complejo, con múltiples caminos de daños. Los efectos de las EOC se han estudiado en detalle en la estructura unidimensional y se han generalizado para el fuselaje, demostrando la independencia del método respecto a la configuración de la estructura y el tipo de sensores utilizados para la adquisición de datos GLW. Por otra parte, esta metodología se puede utilizar para la compensación simultánea de una variedad medible de EOC, que afecten a la adquisición de datos de la onda elástica guiada. El principal resultado entre otros, de esta tesis, es la metodología CT-ANN para la compensación de EOC en técnicas SHM basadas en ondas elásticas guiadas para el diagnóstico de daño. ABSTRACT One of the open problems to implement Structural Health Monitoring techniques based on elastic guided waves in real aircraft structures at operation is the influence of the environmental and operational conditions (EOC) on the damage diagnosis problem. This thesis deals with the compensation of these environmental and operational effects, specifically, the temperature and the external loading, by the use of the Chirplet Transform working with Artificial Neural Networks. It is well known that the guided elastic wave form is affected by the damage appearance (what is known as the damage sensitive feature or DSF). The DSF is modified by the temperature and by the load applied to the structure. The EOC promotes variations in the acquired data (DSF) and cause mistakes in damage diagnosis algorithms. This effect promotes changes on the waveform due to the EOC variations of the same order than the damage occurrence. It is difficult to separate both effects in order to avoid damage diagnosis mistakes. Therefore it is necessary to quantify and compensate the effect of EOC over the GLW forms. There are several approaches to compensate the EOC effects such as Optimal Baseline Selection (OBS) or Baseline Signal Stretching (BSS). Usually, they are used for temperature compensation. The new method proposed here mixes experimental data analysis, as in the OBS method, and Artificial Neural Network (ANN) models to replace the physical modelling which involves the BSS method. The experimental data analysis studied is based on apply the Chirplet Transform (CT) to extract the EOC signature on the DSF. The information obtained varying EOC is employed to train an ANN. Then, the ANN will act as a baselines interpolator of the undamaged structure. The ANN generates reference information at any EOC. By comparing real measurements of the DSF against the ANN simulated values, the damage signature appears clearly in the DSF, enabling an accurate damage diagnosis. This schema has been applied in a range of EOC for a one-dimensional structure containing single damage path and two dimensional real fuselage structure with stiffener elements and multiple damage paths. The EOC effects tested in the one-dimensional structure have been generalized to the fuselage showing its independence from structural arrangement and the type of sensors used for GLW data acquisition. Moreover, it can be used for the simultaneous compensation of a variety of measurable EOC, which affects the guided wave data acquisition. The main result, among others, of this thesis is the CT-ANN methodology for the compensation of EOC in GLW based SHM technique for damage diagnosis.