928 resultados para vehicular emissions
Resumo:
En els últims 30 anys, la comunitat internacional ha anat agafant consciència dels efectes que pot tenir l’ increment de les emissions de gasos d’ efecte hivernacle (GEH). És per aquest motiu, entre d’ altres que es fan inventaris d’ emissions de GEH a nivell estatal i a gran escala. Aquest projecte té com a principal objectiu determinar i quantificar les emissions de GEH a escala local del municipi de Girona. Per tal de poder dur a terme aquest treball ha calgut buscar metodologies i softwares, que s’ han hagut d’ adaptar a la singularitat que té Girona, sobretot pel que fa al transport. Finalment es fan propostes que s’ adapten a la problemàtica del municipi
Resumo:
Road transport is a major source of air pollution and greenhouse gas emissions around the world. There is an increasing interest in accurate information on local vehicle emission levels for policy development and sustainable traffic management. Previous studies have shown that emission predictions for the Australian situation need to reflect both the Australian fleet and driving behaviour to avoid unreliable outcomes. This paper discusses a new Australian vehicle emission software (PΔP) and a case-study where traffic simulation software (Aimsun) is combined with PΔP to demonstrate how consistent results can be achieved for the Australian situation. The case-study is an Australian city modelled using the microscopic simulator to generate the required trajectory data of each individual vehicle for the emission model. The simulation results are used in a number of ways: to assess the impacts of urban driving behaviour on fuel consumption, to create maps showing where and when elevated emission levels occur and to compare results with another program (COPERT Australia). The paper will also discuss where further research is required.
Resumo:
The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO2, CH4 and N2O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO2 emissions may decrease, the effect is counterbalanced by increased N2O emissions, especially since N2O has a 300-fold stronger greenhouse effect than CO2. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making
Resumo:
This paper analyses the international inequalities in CO2 emissions intensity for the period 1971- 2009 and assesses explanatory factors. Multiplicative, group and additive methodologies of inequality decomposition are employed. The first allows us to clarify the separated role of the carbonisation index and the energy intensity in the pattern observed for inequalities in CO2 intensities; the second allows us to understand the role of regional groups; and the third allows us to investigate the role of different fossil energy sources (coal, oil and gas). The results show that, first, the reduction in global emissions intensity has coincided with a significant reduction in international inequality. Second, the bulk of this inequality and its reduction are attributed to differences between the groups of countries considered. Third, coal is the main energy source explaining these inequalities, although the growth in the relative contribution of gas is also remarkable. Fourth, the bulk of inequalities between countries and its decline are explained by differences in energy intensities, although there are significant differences in the patterns demonstrated by different groups of countries.
Resumo:
This paper analyzes the carbon dioxide emissions of the services sectors subsystem of Uruguay in 2004. Services, with the exception of transport, are often considered intangible because of their low level of direct emissions. However, the provision of services requires inputs produced by other sectors, including several highly materialintensive sectors. Through input–output analysis we investigate the relationship between the services subsystem and the rest of the economy as regards carbon dioxide emissions. This approach allows us to study the importance of the set of services branches as a unit in the economic structure as well as to analyze in detail the relationship between the branches. The results depict that services’ direct emissions are the main component, as a consequence of transport-related sectors. However, the pollution that the services subsystem makes the rest of the economy produce is very significant, and it is almost all explained by non-transport-related sectors. This analysis is useful for determining the sectors in which mitigation policies are more effective, and whether they would be better tackled through technical improvements and better practices or through demand policies.
Resumo:
This paper uses the possibilities provided by the regression-based inequality decomposition (Fields, 2003) to explore the contribution of different explanatory factors to international inequality in CO2 emissions per capita. In contrast to previous emissions inequality decompositions, which were based on identity relationships (Duro and Padilla, 2006), this methodology does not impose any a priori specific relationship. Thus, it allows an assessment of the contribution to inequality of different relevant variables. In short, the paper appraises the relative contributions of affluence, sectoral composition, demographic factors and climate. The analysis is applied to selected years of the period 1993–2007. The results show the important (though decreasing) share of the contribution of demographic factors, as well as a significant contribution of affluence and sectoral composition.
Resumo:
The degradation of air quality in great urban centers is noted by frequent critical episodes of air pollution and public health issues, and vehicles are a great source of pollutant emissions, mainly derived from combustion processes. A database is needed to direct mitigation of emissions. The main objective of this work is to present it as an emissions inventory. The results show that vehicular sources of CO, HC and NOx represent over 75% of total emissions in the MRC. Besides, the proposed methodology presented results consistent with the literature
Resumo:
This study investigated the emission of N2O during the sequential aerated (60-min) and non-aerated (30-min) stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP). N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.
Resumo:
The objective in this Master’s Thesis was to determine VOC emissions from veneer drying in softwood plywood manufacturing. Emissions from plywood industry have become an important factor because of the tightened regulations worldwide. In this Thesis is researched quality and quantity of the VOCs from softwood veneer drying. One of the main objectives was to find out suitable cleaning techniques for softwood VOC emissions. In introduction part is presented veneer drying machines, wood mechanical and chemical properties. VOC control techniques and specified VOC limits are introduced also in the introduction part. Plywood mills have not had interest to VOC emissions previously nevertheless nowadays plywood mills worldwide must consider reduction of the emissions. This Thesis includes measuring of emissions from softwood veneer dryer, analyzation of measured test results and reviewing results. Different air conditions inside of the dryer were considered during planning of the measurements. Results of the emissions measurements were compared to the established laws. Results from this Thesis were softwood veneer dryer emissions in different air conditions. Emission control techniques were also studied for softwood veneer dryer emissions for further specific research.
Resumo:
A comparative study of elements deposited on tree bark was carried out for urban and periurban areas of two of the most important cities in Argentina. The content of Fe, Mg, Al, Mn, Zn, Pb, Ba, Cr, Hg, Cu, Ni, Cd and Sb was determined by inductively coupled plasma atomic emission spectrometry (ICP-OES) in Morus alba tree bark collected in the cities of Buenos Aires and Mendoza. The main air pollutants detected in the Buenos Aires urban area were Ba, Cr, Cu and Ni and indicate significative difference from the Mendoza urban and periurban areas. Significantly, higher concentrations of Zn, Ba, Cr and Cu were recorded in the periurban area of the city of Buenos Aires than in Mendoza. Bark samples were strongly influenced by dust and show Al, Fe, Mg and other element accumulations that indicate that soil particles were carried out by wind. Elements like Ba and Zn, commonly linked to traffic emissions, showed the highest concentrations in the Buenos Aires metropolitan area, possibly due to more intensive vehicular traffic. Our results indicated that intensity of vehicular traffic and not city structure is responsible for air pollution.
Resumo:
The proper management of agricultural crop residues could produce benefits in a warmer, more drought-prone world. Field experiments were conducted in sugarcane production areas in the Southern Brazil to assess the influence of crop residues on the soil surface in short-term CO2 emissions. The study was carried out over a period of 50 days after establishing 6 plots with and without crop residues applied to the soil surface. The effects of sugarcane residues on CO2 emissions were immediate; the emissions from residue-covered plots with equivalent densities of 3 (D50) and 6 (D100) t ha-1 (dry mass) were less than those from non-covered plots (D0). Additionally, the covered fields had lower soil temperatures and higher soil moisture for most of the studied days, especially during the periods of drought. Total emissions were as high as 553.62 ± 47.20 g CO2 m-2, and as low as 384.69 ± 31.69 g CO2 m-2 in non-covered (D0) and covered plot with an equivalent density of 3 t ha-1 (D50), respectively. Our results indicate a significant reduction in CO2 emissions, indicating conservation of soil carbon over the short-term period following the application of sugarcane residues to the soil surface.
Resumo:
We conducted a study of the processes associated to NH3 emission in naturally ventilated dairy cattle facilities, having described factors that regulate NH3 emission, as well as methodologies for measuring these emissions at these facilities. Appropriate techniques to mitigate NH3 emission in facilities located in regions with warm climates were also identified. The most effective mitigation techniques with simple implementation include strategies associated to: (i) installation design and flooring, which lead to reduced emissions, (ii) excreta pre-excretion, namely the use of diets with optimized crude protein content and increased milk production at farm level; and (iii) excreta post-excretion, particularly by changing the conditions of environmental monitoring within the premises, practice introduction or additive application in the management of excreta deposited on floors.
Resumo:
Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.
Resumo:
More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.
Resumo:
Global warming is assertively the greatest environmental challenge for humans of 21st century. It is primarily caused by the anthropogenic greenhouse gas (GHG) that trap heat in the atmosphere. Because of which, the GHG emission mitigation, globally, is a critical issue in the political agenda of all high-profile nations. India, like other developing countries, is facing this threat of climate change while dealing with the challenge of sustaining its rapid economic growth. India’s economy is closely connected to its natural resource base and climate sensitive sectors like water, agriculture and forestry. Due to Climate change the quality and distribution of India’s natural resources may transform and lead to adverse effects on livelihood of its people. Therefore, India is expected to face a major threat due to the projected climate change. This study proposes possible solutions for GHG emission mitigation that are specific to the power sector of India. The methods discussed here will take Indian power sector from present coal dominant ideology to a system, centered with renewable energy sources. The study further proposes a future scenario for 2050, based on the present Indian government policies and global energy technologies advancements.