977 resultados para vegetation ecology
Resumo:
Key resource areas (KRAs), defined as dry season foraging zones for herbivores, were studied relative to the more extensive outlying rangeland areas (non-KRAs) in Kenya. Field surveys with pastoralists, ranchers, scientists and government officials delineated KRAs on the ground. Identified KRAs were mapped based on global positioning and local experts' information on KRAs accessibility and ecological attributes. Using the map of known KRAs and non-KRAs, we examined characteristics of soils, climate, topography, land use/cover attributes at KRAs relative to non-KRAs. How and why do some areas (KRAs) support herbivores during droughts when forage is scarce in other areas of the landscape? We hypothesized that KRAs have fundamental ecological and socially determined attributes that enable them to provide forage during critical times and we sought to characterize some of those attributes in this study. At the landscape level, KRAs took different forms based on forage availability during the dry season but generally occurred in locations of the landscape with aseasonal water availability and/or difficult to access areas during wet season forage abundance. Greenness trends for KRAs versus non-KRAs were evaluated with a 22-year dataset of Normalized Difference Vegetation Index (NDVI). Field surveys of KRAs provided qualitative information on KRAs as dry season foraging zones. At the scale of the study, soil attributes did not significantly differ for KRAs compared to non-KRAs. Slopes of KRA were generally steeper compared to non-KRAs and elevation was higher at KRAs. Field survey respondents indicated that animals and humans generally avoid difficult to access hilly areas using them only when all other easily accessible rangeland is depleted of forage during droughts. Understanding the nature of KRAs will support identification, protection and restoration of critical forage hotspots for herbivores by strengthening rangeland inventory, monitoring, policy formulation, and conservation efforts to improve habitats and human welfare. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cultivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration increased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 yr after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.11 3.04 Mg C.ha(-1) yr(-1), with a mean of 0.54 Mg C.ha(-1).yr(-1) and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.
Resumo:
Carbon pools and fluxes were quantified along an environmental gradient in northern Arizona. Data are presented on vegetation, litter, and soil C pools and soil CO2 fluxes from ecosystems ranging from shrub-steppe through woodlands to coniferous forest and the ecotones in between. Carbon pool sizes and fluxes in these semiarid ecosystems vary with temperature and precipitation and are strongly influenced by canopy cover. Ecosystem respiration is approximately 50 percent greater in the more mesic, forest environment than in the dry shrub-steppe environment. Soil respiration rates within a site vary seasonally with temperature but appear to be constrained by low soil moisture during dry summer months, when approximately 75% of total annual soil respiration occurs. Total annual amount of CO2 respired across all sites is positively correlated with annual precipitation and negatively correlated with temperature. Results suggest that changes in the amount and periodicity of precipitation will have a greater effect on C pools and fluxes than will changes in temperature :in the semiarid Southwestern United States.
Resumo:
Landscape scale environmental gradients present variable spatial patterns and ecological processes caused by climate, topography and soil characteristics and, as such, offer candidate sites to study environmental change. Data are presented on the spatial pattern of dominant species, biomass, and carbon pools and the temporal pattern of fluxes across a transitional zone shifting from Great Basin Desert scrub, up through pinyon-juniper woodlands and into ponderosa pine forest and the ecotones between each vegetation type. The mean annual temperature (MAT) difference across the gradient is approximately 3 degrees C from bottom to top (MAT 8.5-5.5) and annual precipitation averages from 320 to 530 mm/yr, respectively. The stems of the dominant woody vegetation approach a random spatial pattern across the entire gradient, while the canopy cover shows a clustered pattern. The size of the clusters increases with elevation according to available soil moisture which in turn affects available nutrient resources. The total density of woody species declines with increasing soil moisture along the gl-adient, but total biomass increases. Belowground carbon and nutrient pools change from a heterogenous to a homogenous distribution on either side of the woodlands. Although temperature controls the: seasonal patterns of carbon efflux from the soils, soil moisture appears to be the primary driving variable, but response differs underneath the different dominant species, Similarly, decomposition of dominant litter occurs faster-at the cooler and more moist sites, but differs within sites due to litter quality of the different species. The spatial pattern of these communities provides information on the direction of future changes, The ecological processes that we documented are not statistically different in the ecotones as compared to the: adjoining communities, but are different at sites above the woodland than those below the woodland. We speculate that an increase in MAT will have a major impact on C pools and C sequestering and release processes in these semiarid landscapes. However, the impact will be primarily related to moisture availability rather than direct effects of an increase in temperature. (C) 1998 Elsevier Science B.V.
Resumo:
Summary of Actions Towards Sustainable Outcomes Environmental Issues / Principal Impacts The increased growth of cities is intensifying its impact on people and the environment through: • increased use of energy for the heating and cooling of more buildings, leading to urban heat islands and more greenhouse gas emissions • increased amount of hard surfaces contributing to higher temperatures in cities and more stormwater runoff • degraded air quality and noise impact • reduced urban biodiversity • compromised health and general well-being of people Basic Strategies In many design situations boundaries and constraints limit the application of cutting EDGe actions. In these circumstances designers should at least consider the following: • Consider green roofs early in the design process in consultation with all stakeholders to enable maximised integration with building systems and to mitigate building cost (avoid constructing as a retrofit). • Design of the green roof as part of a building’s structural, mechanical and hydraulic systems could lead to structural efficiency, the ability to optimise cooling benefits and better integrated water recycling systems. • Inform the selection of the type of green roof by considering its function, for example designing for social activity, required maintenance/access regime, recycling of water or habitat regeneration or a combination of uses. • Evaluate existing surroundings to determine possible links to the natural environment and choice of vegetation for the green roof with availability of local plant supply and expertise. Cutting EDGe Strategies • Create green roofs to contribute positively to the environment through reduced urban heat island effect and building temperatures, to improved stormwater quality, increased natural habitats, provision of social spaces and opportunity for increased local food supply. • Maximise solar panel efficiency by incorporating with design of green roof. • Integrate multiple functions for a single green roof such as grey water recycling, food production, more bio-diverse plantings, air quality improvement and provision of delightful spaces for social interaction. Synergies & references • BEDP Environment Design Guide DES 53: Roof and Facade Gardens GEN 4: Positive Development – designing for Net Positive Impacts TEC 26: Living Walls - a way to green the built environment • Green Roofs Australia: www.greenroofs.wordpress.com • International Green Roof Association: www.igra-world.com • Green Roofs for Healthy Cities (USA): www.greenroofs.org • Centre for Urban Greenery and Ecology (Singapore): http://research.cuge.com.sg
Resumo:
This paper anatomises emerging developments in online community engagement in a major global industry: real estate. Economists argue that we are entering a ‘social network economy’ in which ‘complex social networks’ govern consumer choice and product value. In the light of this, organisations are shifting from thinking and behaving in the conventional ‘value chain’ model--in which exchanges between firms and customers are one-way only, from the firm to the consumer--to the ‘value ecology’ model, in which consumers and their networks become co-creators of the value of the product. This paper studies the way in which the global real estate industry is responding to this environment. This paper identifies three key areas in which online real estate ‘value ecology’ work is occurring: real estate social networks, games, and locative media / augmented reality applications. Uptake of real estate applications is, of course, user-driven: the paper not only highlights emerging innovations; it also identifies which of these innovations are actually being taken up by users, and the content contributed as a result. The paper thus provides a case study of one major industry’s shift into a web 2.0 communication model, focusing on emerging trends and issues.
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.
Resumo:
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.
Resumo:
This paper presents a comprehensive discussion of vegetation management approaches in power line corridors based on aerial remote sensing techniques. We address three issues 1) strategies for risk management in power line corridors, 2) selection of suitable platforms and sensor suite for data collection and 3) the progress in automated data processing techniques for vegetation management. We present initial results from a series of experiments and, challenges and lessons learnt from our project.
Resumo:
A good object representation or object descriptor is one of the key issues in object based image analysis. To effectively fuse color and texture as a unified descriptor at object level, this paper presents a novel method for feature fusion. Color histogram and the uniform local binary patterns are extracted from arbitrary-shaped image-objects, and kernel principal component analysis (kernel PCA) is employed to find nonlinear relationships of the extracted color and texture features. The maximum likelihood approach is used to estimate the intrinsic dimensionality, which is then used as a criterion for automatic selection of optimal feature set from the fused feature. The proposed method is evaluated using SVM as the benchmark classifier and is applied to object-based vegetation species classification using high spatial resolution aerial imagery. Experimental results demonstrate that great improvement can be achieved by using proposed feature fusion method.
Resumo:
The distribution, systematics and ecology of Bactrocera tryoni, the Queensland fruit fly are reviewed. Bactrocera tryoni is a member of the B. tryoni complex of species, which currently includes four named species, viz. B. tryoni s.s., B. neohumeralis, B. melas and B. aquilonis. The species status of B. melas and B. aquilonis are unclear (they may be junior synonyms of B. tryoni) and their validity, or otherwise, needs to be confirmed as a matter of urgency. While Queensland fruit fly is regarded as a tropical species, it cannot be assumed that its distribution will spread further south under climate change scenarios. Increasing aridity and hot dry summers, as well as more complex, indirect interactions resulting from elevated CO2, make predicting the future distribution and abundance of B. tryoni difficult. The ecology of B. tryoni is reviewed with respect to current control approaches (with the exception of Sterile Insect Technique which is covered in a companion paper). We conclude that there are major gaps in the knowledge required to implement most non-insecticide based management approaches. Priority areas for future research include host plant interactions, protein and cue-lure foraging and use, spatial dynamics, development of new monitoring tools, investigating the use of natural enemies and better integration of fruit flies into general horticultural IPM systems.
Resumo:
Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.
Resumo:
International practice-led design research in landscape architecture has identified the need for addressing the loss of biodiversity in urban environments. China has lost much of its biodiversity in rural and urban environments over thousands of years. However some Chinese cities have attempted to conserve what remains and enhance existing vegetation communities in isolated pockets. Island biogeography has been used as the basis for planning and designing landscapes in Australia and North America but not as yet in China, as far as we know. A gap in landscape design knowledge exists regarding how to apply landscape ecology concepts to urban islands of remaining biodiversity being developed for heavy Chinese domestic tourism impacts in the future. This project responded to the demands for harbour-side tourism opportunities in Xiamen City, Fujian Province, by proposing a range of eco-design innovations using concepts of patch, edge and interior to interconnect people and nature in a Chinese setting.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.