940 resultados para training session
Resumo:
Purpose: Exercise training restores innate immune system cell function in post-myocardial infarction (post-MI) rats. However, studies of the involvement of lymphocyte (Ly) in the setting of the congestive heart failure (CHF) are few. To address this issue, we investigated the function of Ly obtained from cervical lymph nodes from post-MI CHF rats submitted to treadmill running training. Methods: Twenty-five male Wistar rats were randomly assigned to the following groups: rats submitted to ligation of the left coronary artery, which were sedentary (MI-S, N= 7, only limited activity) or trained (MI-T, N= 6, on a treadmill (0% grade at 13-20 m.m(-1)) for 60 min.d(-1), 5 d.wk(-1), for 8-10 wk); or sham-operated rats, which were sedentary (sham-S, N = 6) or trained (sham-T, N = 6). The incorporation of [2-C-14]-thymidine by Ly cultivated in the presence of concanavalin A (Con A) and lipopolysaccharide (LPS), cytokine production by Ly cultivated in the presence of phytohemagglutinin (PHA), and plasma concentration of glutamine were assessed in all groups, 48 h after the last exercise session. Results: Proliferative capacity was increased, following incubation with Con-A in the MI groups, when compared with the sham counterparts. When incubated in the presence of PHA, MI-S produced more IL-4 (96%) than sham-S (P < 0.001). The training protocol induced a 2.2-fold increase in the production of interleukin-2 (P < 0.001) of the cells obtained from the cervical lymph nodes of MI-T, compared with MI-S. Conclusion: The moderate endurance training protocol caused an increase in IL-2 production, and a trend toward the reversion of the Th-1/Th-2 imbalance associated with IL-4 production increased in the post-MI CHF animal model.
Resumo:
The aim of this study was to examine the influence of moderate swimming training on the GH/IGF-1 growth axis and tibial mass in diabetic rats. Male Wistar rats were allocated to one of four groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). Diabetes was induced with alloxan (35 mg/kg b.w.). The training program consisted of a 1 h swimming session/day with a load corresponding to 5% of the b.w., five days/week for six weeks. At the end of the training period, the rats were sacrificed and blood was collected for quantification of the serum glucose, insulin, GH, and IGF-1 concentrations. Samples of skeletal muscle were used to quantify the IGF-1 pepticle content. The tibias were collected to determine their total area, length and bone mineral content. The results were analyzed by ANOVA with P < 0.05 indicating significance. Diabetes decreased the serum levels of GH and IGF-1, as well as the tibial length, total area and bone mineral content in the SD group (P < 0.05). Physical training increased the serum IGF-1 level in the TC and TD groups when compared to the sedentary groups (SC and SD), and the tibial length, total area and bone mineral content were higher in the TD group than in the SD group (P < 0.05). Exercise did not alter the level of IGF-1 in gastrocnemius muscle in nondiabetic rats, but the muscle IGF-1 content was higher in the TD group than in the SD group. These results indicate that swimming training stimulates bone mass and the GH/IGF-1 axis in diabetic rats. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present study investigated the effects of moderate physical training on some of the parameters in the GH-IGF axis in experimental diabetic rats. Male Wistar rats were allocated into the following groups: sedentary control, trained control, sedentary diabetic, trained diabetic. Diabetes was induced by alloxan (32 mg/kg, b.w. iv). The physical training protocol consisted of 1 h swimming session/day, 5 days/week for 8 weeks supporting a load corresponding to 90% of maximal lactate steady state. After the experimental period, blood was collected to measure serum glucose, insulin, triglycerides, albumin, insulin-like growth factors-I (IGF-I), and growth hormone (GH). Pituitary gland was removed for GH quantification. Diabetes increased blood glucose and triglycerides and decreased insulin, IGF-I, serum and pituitary GH. Physical training decreased glucose and triglycerides, and also counteracted the reduction of serum IGF-I in diabetic rats. In conclusion, physical training recovered serum IGF-I showing no alteration of serum or pituitary GH levels.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study analyzed the effects of overground walking training at ventilatory threshold (VT) velocity on glycaemic control, body composition, physical fitness and lipid profile in DM2 women. Nineteen sedentary patients were randomly assigned to a control group (CG; n=10, 55.9±2.2 years) or a trained group (TG; n=9, 53.4±2.3 years). Both groups were subjected to anthropometric measures, a 12-h fasting blood sampling and a graded treadmill exercise test at baseline and after a 12-week period, during which TG followed a training program involving overground walking at VT velocity for 20-60min/session three times/week. Significant group×time interactions (P<0.05) in glycated hemoglobin (HbA1c), body mass, body mass index (BMI), peak oxygen uptake (VO 2peak) and exercise duration were observed as effects of training exercise, whereas intervention did not induced significant changes (P>0.05) in fasting blood glucose, submaximal fitness parameters and lipid profile. Our results suggest that overground walking training at VT velocity improves long term glycaemic control, body composition and exercise capacity, attesting for the relevance of this parameter as an effective strategy for the exercise intensity prescription in DM2 population. © 2011 Elsevier B.V.
Resumo:
Context: Presence of endothelial nitric oxide synthase (eNOS) gene polymorphism has been associated with cardiovascular disease (CVD) whereas exercise training (EX) promotes beneficial effects on CVD which is related to increased nitric oxide levels (NO). Objective: To evaluate if women with eNOS gene polymorphism at position-G894T would be less responsive to EX than those who did not carry T allele. Methods: Women were trained 3 days/week, 40 minutes session during 6 months. Cardio-biochemical parameters and genetic analysis were performed in a double-blind fashion. Results: Plasma NOx - levels were similar in both groups at baseline (GG genotype: 18.44±3.28 μM) and (GT + TT genotype: 17.19±2.43 μM) and after EX (GG: 29.20±4.33 and GT+TT: 27.38±3.12 μM). A decrease in blood pressure was also observed in both groups. Discussion and conclusion: The presence of eNOS polymorphism does not affect the beneficial effects of EX in women. © 2011 Informa UK, Ltd.
Resumo:
Purpose. To verify the effects of resistance training at the electromyographic fatigue threshold (EMGFT) based on one-repetition maximum strength (1RM), heart rate (HR), rate of perceived exertion (PE) and endurance time (EndT). Methods. Nineteen subjects (training group [TG]: n = 10; control group [CG]: n = 9), performed 1-min bicep curl exercises sets at 25%, 30%, 35% and 40% 1RM. Electromyography (biceps brachii and brachiorradialis), HR and PE were registered. Biceps brachii EMGFT was used to create a load index for an eight-week resistance training programme (three sets until exhaustion/session, two sessions/week) for the TG. The CG only attended one session in the first week and another session in the last week of the eight-week training period for EndT measurement. EndT was determined from the number of repetitions of each of the three sets performed in the first and last training sessions. After training, 1RM, EMGFT, EndT, HR and PE at the different bicep curl load intensities were again measured for both groups. Results. Increases in 1RM (5.9%, p < 0.05) and EndT (> 60%, p < 0.001) after training were found. In addition, PE was reduced at all load intensities (p < 0.05), while no changes were found for HR and EMGFT after training. Conclusions. Strength-endurance training based on the EMGFT improved muscular endurance and also, to a lesser extent, muscular strength. Moreover, the reduced levels of physical exertion after training at the same intensity suggest that endurance training exercises may improve comfort while performing strength exercises.
Resumo:
The aim of the study was to verify whether 8 weeks of resistance training employing maximal isokinetic eccentric (IERT) knee extensor actions would reduce the acute force loss observed after high-intensity treadmill running exercise. It was hypothesized that specific IERT would induce protective effects against muscle fatigue and ultrastructural damages, preventing or reducing the loss in mechanical muscle function after running. Subjects were tested before and after IERT protocol for maximal isometric, concentric and eccentric isokinetic knee extensor strength (60 and 180 s-1). In a second session, subjects performed treadmill running (~35 min) and the previously mentioned measurements were repeated immediately after running. Subsequently, subjects were randomized to training (n = 12) consisting of 24 sessions of maximal IERT knee extensors actions at 180 s-1, or served as controls (n = 8). The effects of acute running-induced fatigue and training on isokinetic and isometric peak torque, and rate of force development (RFD) were investigated. Before IERT, running-induced eccentric torque loss at 180 s-1 was -8 %, and RFD loss was -11 %. Longitudinal IERT led to reduced or absent acute running-induced losses in maximal IERT torque at 180 s-1 (+2 %), being significantly reduced compared to before IERT (p < 0.05), however, RFD loss remained at -11 % (p > 0.05). In conclusion, IERT yields a reduced strength loss after high-intensity running workouts, which may suggest a protective effect against fatigue and/or morphological damages. However, IERT may not avoid reductions in explosive muscle actions. In turn, this may allow more intense training sessions to be performed, facilitating the adaptive response to running training. © 2013 Springer-Verlag Berlin Heidelberg.
Strength gain through eccentric isotonic training without changes in clinical signs or blood markers
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present research examined the effects of a cognitive training program combined with psychoeducational intervention for diabetic elderly patients. Specifically, it aimed at assessing the effects of an eight-session cognitive training and educational program in diabetic elderly individuals and investigating changes in their awareness about specific aspects of diabetes. The final sample consisted of 34 individuals-19 in the experimental group (EG) and 15 in the control group (CG), all residing in the eastern region of the city of Sao Paulo. The protocol included clinical and sociodemographic questions; the Diabetes Attitudes Questionnaire (ATT-19); Diabetes Knowledge Scale (DKN-A); Mini Mental State Examination (MMSE); Verbal Fluency-animal category (VF); Geriatric Depression Scale (GDS); Short Cognitive Performance Test (SKT); and the Rivermead Behavioral Memory Test (RBMT). Results pointed to a significant difference between the two groups for the ATT-19, DKN, and SKT-memory and SKT-total, and a marginally significant difference for the RBMT history in the posttest. As for the remaining cognitive variables, no changes were observed. Retest effects were not observed in the CG. We concluded that cognitive training combined with psychoeducational intervention in diabetic elderly individuals may be effective in producing cognitive gains as well as attitude and knowledge improvement concerning diabetes mellitus (DM).
Resumo:
Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1a), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3 beta) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1a association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3 beta phosphorylation levels and glycogen content at 24?h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss. J. Cell. Physiol. 227: 29172926, 2012. (C) 2011 Wiley Periodicals, Inc.