177 resultados para torm surges


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (doctoral)--Universitet Kobenhavn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Although manufacturers of bicycle power monitoring devices SRM and Power Tap (PT) claim accuracy to within 2.5%, there are limited scientific data available in support. The purpose of this investigation was to assess the accuracy of SRM and PT under different conditions. Methods: First, 19 SRM were calibrated, raced for 11 months, and retested using a dynamic CALRIG (50-1000 W at 100 rpm). Second, using the same procedure, five PT were repeat tested on alternate days. Third, the most accurate SRM and PT were tested for the influence of cadence (60, 80, 100, 120 rpm), temperature (8 and 21degreesC) and time (1 h at similar to300 W) on accuracy. Finally, the same SRM and PT were downloaded and compared after random cadence and gear surges using the CALRIG and on a training ride. Results: The mean error scores for SRM and PT factory calibration over a range of 50-1000 W were 2.3 +/- 4.9% and -2.5 +/- 0.5%, respectively. A second set of trials provided stable results for 15 calibrated SRM after 11 months (-0.8 +/- 1.7%), and follow-up testing of all PT units confirmed these findings (-2.7 +/- 0.1%). Accuracy for SRM and PT was not largely influenced by time and cadence; however. power output readings were noticeably influenced by temperature (5.2% for SRM and 8.4% for PT). During field trials, SRM average and max power were 4.8% and 7.3% lower, respectively, compared with PT. Conclusions: When operated according to manufacturers instructions, both SRM and PT offer the coach, athlete, and sport scientist the ability to accurately monitor power output in the lab and the field. Calibration procedures matching performance tests (duration, power, cadence, and temperature) are, however, advised as the error associated with each unit may vary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of using photosynthetic sulfide-oxidizing bacteria to remove sulfide from wastewater in circumstances where axenic cultures are unrealistic has been completely reconsidered on the basis of known ecophysiological data, and the principles of photobioreactor and chemical reactor engineering. This has given rise to the development of two similar treatment concepts relying on biofilms dominated by green sulfur bacteria (GSB) that develop on the exterior of transparent surfaces suspended in the wastewater. The GSB are sustained and selected for by radiant energy in the band 720 - 780 nm, supplied from within the transparent surface. A model of one of these concepts was constructed and with it the reactor concept was proven. The dependence of sulfide-removal rate on bulk sulfide concentration has been ascertained. The maximum net areal sulfide removal rate was 2.23 g m(-2) day(-1) at a bulk sulfide concentration of 16.5 mg L-1 and an incident irradiance of 1.51 W m(-2). The system has a demonstrated capacity to mitigate surges in sulfide load, and appears to use much less radiant power than comparable systems. The efficacy with which this energy was used for sulfide removal was 1.47 g day(-1) W-1. The biofilm was dominated by GSB, and evidence gathered indicated that other types of phototrophs were not present. (C) 2004 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems—stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems – stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The North American monsoon (NAM), an onshore wind shift occurring between July and September, has evolved in character during the Holocene largely due to changes in Northern Hemisphere insolation. Published paleoproxy and modeling studies suggest that prior to ~8000 cal years BP, the NAM affected a broader region than today, extending westward into the Mojave Desert of California. Holocene proxy SST records from the Gulf of California (GoC) and the adjacent Pacific provide constraints for this changing NAM climatology. Prior to ~8000 cal years BP, lower GoC SSTs would not have fueled northward surges of tropical moisture up the GoC, which presently contribute most of the monsoon precipitation to the western NAM region. During the early Holocene, the North Pacific High was further north and SSTs in the California Current off Baja California were warmer, allowing monsoonal moisture flow from the subtropical Pacific to take a more direct, northwesterly trajectory into an expanded area of the southwestern U.S. west of 114°W. A new upwelling record off southwest Baja California reveals that enhanced upwelling in the California Current beginning at ~7500 cal year BP may have triggered a change in NAM climatology, focusing the geographic expression of NAM in the southwest USA into its modern core region east of ~114°W, in Arizona and New Mexico. Holocene proxy precipitation records from the southwestern U.S. and northwestern Mexico, including lakes, vegetation/pollen, and caves are reviewed and found to be largely supportive of this hypothesis of changing Holocene NAM climatology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution records of coarse lithic content and oxygen isotope have been obtained in a piston core from the Irminger Basin. The last glacial period is characterized by numerous periods of increased iceberg discharges originating partly from Iceland and corresponding to millennial-scale instabilities of the coastal ice sheets and ice shelves in the Nordic area. A comparison with midlatitude sediment cores shows that ice-rafted material corresponding to the Heinrich events was deposited synchronously from 40° to 60°N. There are thus two oscillating systems: every 5-10 kyr massive iceberg armadas are released from large continental ice caps, whereas more frequent instabilities of the coastal ice sheets in the high latitude regions occur every 1.2-3.8 kyr. At the time of the Heinrich events the synchroneity of the response from all the northern hemisphere ice sheets attests the existence of strong interactions between the two systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen and carbon isotope analyses were performed on monospecific or mixed-species samples of benthic foraminifers, as well as on the planktonic species Globigerinoides ruber from a 24-m hydraulic piston core raised on the western flank of the Rio Grande Rise, at DSDP Site 517 (30°56.81'S and 38°02.47'W, water depth 2963 m) in the southwestern Atlantic. This site is presently located in the core of North Atlantic Deep Water (NADW). This is the first long isotopic record of Quaternary benthic foraminifers; it displays at least 30 isotopic stages, 25 of them readily correlated with the standard sequence of Pacific Core V28-239. The depths of both the Bruhnes/Matuyama boundary and the Jaramillo Event based on oxygen isotope stratigraphy agree well with paleomagnetic results. Quaternary faunal data from this part of the Atlantic are dated through isotopic stratigraphy and partially contradict data previously published by Williams and Ledbetter (1979). There was a substantial increase in the size of the earth's major ice sheets culminating at Stage 22 and corresponding to a l per mil progressive increase of d18O maximal values. Further, ice volume-induced isotopic changes were not identical for different glacial cycles. Oxygen and carbon isotope analyses of benthic foraminifers show that during Pleistocene glacial episodes, NADW was cooler than today and that Mediterranean outflow might still have contributed to the NADW sources. The comparison of coiling ratio changes of Globorotalia truncatulinoides with planktonic and benthic oxygen isotope records shows that there might have been southward excursions of the Brazil Current during the Pleistocene, perhaps related to Antarctic surface water surges. The question of the location of NADW sources during glacial maxima remains open.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El 5º Informe del IPCC (Panel Intergubernamental de Cambio Climático, 2014) señala que el turismo será una de las actividades económicas que mayores efectos negativos experimentará en las próximas décadas debido al calentamiento térmico del planeta. En España, el turismo es una fuente principal de ingresos y de creación de puestos de trabajo en su economía. De ahí que sea necesaria la puesta en marcha de medidas de adaptación a la nueva realidad climática que, en nuestro país, va a suponer cambios en el confort climático de los destinos e incremento de extremos atmosféricos. Frente a los planes de adaptación al cambio climático en la actividad turística, elaborados por los gobiernos estatal y regional, que apenas se han desarrollado en España, la escala local muestra interesantes ejemplos de acciones de adaptación al cambio climático, desarrolladas tanto por los municipios (energía, transporte, vivienda, planificación urbanística) como por la propia empresa turística (hoteles, campings, apartamentos). Medidas de ahorro de agua y luz, fomento del transporte público y de las energías limpias, creación de zonas verdes urbanas y adaptación a los extremos atmosféricos destacan como acciones de mitigación del cambio climático en los destinos turísticos principales de nuestro país.