221 resultados para syngas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper gives a brief review of R&D researches for light olefin synthesis directly and indirectly from synthesis gas in the Dalian Institute of Chemical Physics (DICP). The first pilot plant test was on methanol to olefin (MTO) reaction and was finished in 1993, which was based on ZSM-5-type catalyst and fixed bed reaction. In the meantime, a new indirect method designated as SDTO (syngas via dimethylether to olefin) was proposed. In this process, metal-acid bifunctional catalyst was applied for synthesis gas to dimethylether(DME) reaction, and modified SAPO-34 catalyst that was synthesized by a new low-cost method with optimal crystal size was used to convert DME to light olefin on a fluidized bed reactor. The pilot plant test on SDTO was performed and finished in 1995. Evaluation of the pilot plant data showed that 190-200 g of DME were yielded by single-pass for each standard cubic meter of synthesis gas. For the second reaction, 1.880 tons of DME or 2.615 tons of methanol produced 1 ton of light olefins, which constitutes of 0.533 ton of ethylene, 0.349 ton of propylene and 0.118 ton of butene. DICP also paid some attention on direct conversion of synthesis gas to light olefins. A semi-pilot plant test (catalyst 1.8 1) was finished in 1995 with a CO conversion > 70% and a C(2)(=)-C(4)(=) olefin selectivity 71-74% in 1000 h. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An in-situ modified sol-gel method for the preparation of a Ni-based monolith-supported catalyst is reported. With the presence of a proper amount of plasticizer and binder, and at an optimized pH value, the stable boehmite sol was modified with metal ions (Ni, Li, La) successfully without distinct growth of the particle size. Monolith-supported Ni-based/gamma-Al2O3 catalysts were obtained using the modified sol as the coating medium with several cycles of dip-coating and calcination. Combined BET, SEM-EDS, XRD and H-2-TPR investigations demonstrated that the derived monolith catalysts had a high specific surface area, a relatively homogeneous surface composition, and a high extent of interaction between the active component and the support. These catalysts showed relatively stable catalytic activities for partial oxidation of methane (POM) to syngas under atmospheric pressure. The monolith catalysts prepared by this sol-gel method also demonstrated an improved resistance to sintering and loss of the active component during the reaction process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of ZnO or ZrO2 into CuO/HZSM-5 was investigated for DME synthesis from syngas by using the reactive frontal chromatography method, TPR and in situ TPR. These promoters enhanced the catalytic activity of Cu/HZSM-5 and promotion with ZnO and ZrO2 produced a maximum activity, which could be explained by the improvement of the dispersion of Cu and the promotion of CuO reduction. The Cu+ species existing during the reaction have been detected, based on which a Cu-0 <-> Cu+1 redox cycle model was put forward.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mixed-conducting perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) ceramic membrane reactor with high oxygen permeability was applied for the activation of methane. The membrane reactor has intrinsic catalytic activities for methane conversion to ethane and ethylene. C-2 selectivity up to 40-70% was achieved, albeit that conversion rate were low, typically 0.5-3.5% at 800-900 degreesC with a 50% helium diluted methane inlet stream at a flow rate of 34 ml/min. Large amount of unreacted molecular oxygen was detected in the eluted gas and the oxygen permeation flux improved only slightly compared with that under non-reactive air/He experiments. The partial oxidation of methane to syngas in a BSCFO membrane reactor was also performed by packing LiLaNiO/gamma -Al2O3 with 10% Ni loading as the catalyst. At the initial stage, oxygen permeation flux, methane conversion and CO selectivity were closely related with the state of the catalyst. Less than 21 h was needed for the oxygen permeation flux to reach its steady state. 98.5% CH4 conversion, 93.0% CO selectivity and 10.45 ml/cm(2) min oxygen permeation flux were achieved under steady state at 850 degreesC. Methane conversion and oxygen permeation flux increased with increasing temperature, No fracture of the membrane reactor was observed during syngas production. However, H-2-TPR investigation demonstrated that the BSCFO was unstable under reducing atmosphere, yet the material was found to have excellent phase reversibility. A membrane reactor made from BSCFO was successfully operated for the POM reaction at 875 degreesC for more than 500h without failure, with a stable oxygen permeation flux of about 11.5 ml/cm(2) min. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, oxygen permeable membrane used in membrane reactor for selective oxidation of alkanes will be discussed in detail. The recent developments for the membrane materials will be presented, and the strategy for the selection of the membrane materials will be outlined. The main applications of oxygen permeable membrane in selective oxidation of light alkanes will be summarized, which includes partial oxidation of methane (POM) to syngas and partial oxidation of heptane (POH) to produce H-2, oxidative coupling of methane (OCM) to C-2, oxidative dehydrogenation of ethane (ODE) to ethylene and oxidative dehydrogenation of propane (ODP) to propylene. Achievements for the membrane material developments and selective oxidation of light alkanes in membrane reactor in our group are highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph2P(3-C6H4SO3)] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)(2)(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf2 (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF3SO2) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO2. Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas: substrate ratio. However, a factor-dependent interaction between the syngas: substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO2 pressures or when N-2 was used instead of CO2 rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO2 pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)(-1)) of 500 h(-1) at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear: branched (1:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein we investigate the use of CuO-ZnO-Al2O3 (CZA) with different solid acid catalysts (NH(4)ZSM-5. HZSM-5 or gamma-Al2O3) for the production of dimethyl ether from syngas. It was found that of the solid acids, which are necessary for the dehydration function of the admixed system, the CZA/HZSM-5 bifunctional catalyst with a 0.25 acid fraction showed high stability over a continuous period of 212 h.

As this particular system was observed to loose around 16.2% of its initial activity over this operating period this study further investigates the CZA/HZSM-5 bifunctional catalyst in terms of its deactivation mechanisms. TPO investigations showed that the catalyst deactivation was related to coke deposited on the metallic sites: interface between the metallic sites and the support near the metal-support: and on the support itself. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Cu/ZnO/Al2O3 commercial catalyst for methanol synthesis from syngas was investigated under operational conditions. HERFD XAS and EXAFS data were recorded under different reaction gas mixtures, temperatures, and pressures. Activation of the catalyst precursor occurred via a Cu+ intermediate. The active catalyst predominantly consists of metallic Cu and ZnO. Methanol production only starts when all accessible Cu is reduced. The structure of the active catalyst did not change with temperature or pressure even though the methanol yield changed strongly. Formation of a carbon-containing layer on top of the catalyst surface was detected by TPD, which was correlated with a several-hour induction period in the methanol production after the catalyst reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High temperature co-electrolysis of steam and carbon dioxide using a solid oxide cell (SOC) has been shown to be an efficient route to produce syngas (CO + H-2), which can then be converted to synthetic fuel. Optimization of co-electrolysis requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the SOC during operation. Thermal imaging, Raman spectroscopy and Diffuse Reflectance Infrared Fourier Transform Spectroscopy are being developed to probe in-situ both the reactions occurring during operation and any associated changes within the structure of the electrodes and electrolyte. Here we discuss the challenges in designing experimental apparatus suitable for high temperature operation with optical spectroscopic access to the areas of the SOC that are of interest. In particular, issues with sealing, temperature gradients, signal strength and cell configuration are discussed and final designs are presented. Preliminary results obtained during co-electrolysis operation are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas-to-liquid processes are generally used to convert natural gas or other gaseous hydrocarbons into liquid fuels via an intermediate syngas stream. This includes the production of liquid fuels from biomass-derived sources such as biogas. For example, the dry reforming of methane is done by reacting CH4 and CO2, the two main components of natural biogas, into more valuable products, i.e., CO and H2. Nickel containing perovskite type catalysts can promote this reaction, yielding good conversions and selectivities; however, they are prone to coke laydown under certain operating conditions. We investigated the addition of high oxygen mobility dopants such as CeO2, ZrO2, or YSZ to reduce carbon laydown, particularly using reaction conditions that normally result in rapid coking. While doping with YSZ, YDC, GDC, and SDC did not result in any improvement, we show that a Ni perovskite catalyst (Na0.5La0.5Ni0.3Al0.7O2.5) doped with 80.9 ZrO2 15.2 CeO2 gave the lowest amount of carbon formation at 800 °C and activity was maintained over the operating time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conversion of biomass for production of liquid fuels can help in reducing the greenhouse gas (GHG) emissions which are predominantly generated by combustion of fossil fuels. Adding oxymethylene ethers (OMEs) in conventional diesel fuel has the potential to reduce soot formation during the combustion in a diesel engine. OMEs are downstream products of syngas, which can be generated by the gasification of biomass. In this research, a thermodynamic analysis has been conducted through development of data intensive process models of all the unit operations involved in production of OMEs from biomass. Based on the developed model, the key process parameters affecting the OMEs production including equivalence ratio, H2/CO ratio, and extra water flow rate were identified. This was followed by development of an optimal process design for high OMEs production. It was found that for a fluidized bed gasifier with heat capacity of 28 MW, the conditions for highest OMEs production are at an air amount of 317 tonne/day, at H2/CO ratio of 2.1, and without extra water injection. At this level, the total OMEs production is 55 tonne/day (13 tonne/day OME3 and 9 tonne/day OME4). This model would further be used in a techno-economic assessment study of the whole biomass conversion chain to determine the most attractive pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Co-electrolysis of carbon dioxide and steam has been shown to be an efficient way to produce syngas, however further optimisation requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the solid oxide cell (SOC) during operation. Whilst electrochemical measurements are currently conducted in situ, many analytical techniques can only be used ex situ and may even be destructive to the cell (e.g. SEM imaging of microstructure). In order to fully understand and characterise co-electrolysis, in situ monitoring of the reactants, products and SOC is necessary. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) is ideal for in situ monitoring of co-electrolysis as both gaseous and adsorbed CO and CO2 species can be detected, however it has previously not been used for this purpose. The challenges of designing an experimental rig which allows optical access alongside electrochemical measurements at high temperature and operates in a dual atmosphere are discussed. The rig developed has thus far been used for symmetric cell testing at temperatures from 450[degree]C to 600[degree]C. Under a CO atmosphere, significant changes in spectra were observed even over a simple Au|10Sc1CeSZ|Au SOC. The changes relate to a combination of CO oxidation, the water gas shift reaction and carbonate formation and decomposition processes, with the dominant process being both potential and temperature dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ionic liquid trihexyltetradecylphosphonium 1,2,4-triazolide, [P66614][124Triz], has been shown to chemisorb CO2 through equimolar binding of the carbon dioxide with the 1,2,4-triazolide anion. This leads to a possible new, low energy pathway for the electrochemical reduction of carbon dioxide to formate and syngas at low overpotentials, utilizing this reactive ionic liquid media. Herein, an electrochemical investigation of water and carbon dioxide addition to the [P66614][124Triz] on gold and platinum working electrodes is reported. Electrolysis measurements have been performed using CO2 saturated [P66614][124Triz] based solutions at −0.9 V and −1.9 V on gold and platinum electrodes. The effects of the electrode material on the formation of formate and syngas using these solutions are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new low-energy pathway is reported for the electrochemical reduction of CO2 to formate and syngas at low overpotentials, utilizing a reactive ionic liquid as the solvent. The superbasic tetraalkyl phosphonium ionic liquid [P66614][124Triz] is able to chemisorb CO2 through equimolar binding of CO2 with the 1,2,4-triazole anion. This chemisorbed CO2 can be reduced at silver electrodes at overpotentials as low as 0.17 V, forming formate. In contrast, physically absorbed CO2 within the same ionic liquid or in ionic liquids where chemisorption is impossible (such as [P66614][NTf2]) undergoes reduction at significantly increased overpotentials, producing only CO as the product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia mecânica