894 resultados para synchronous machine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans cet ouvrage, l'auteur propose une conceptualisation théorique de la coprésence en un même film de mondes multiples en abordant différents paramètres (hétérogénéité de la facture de l'image, pratiques du montage alterné, typologie des enchâssements, expansion sérielle, etc.) sur la base d'un corpus de films de fiction récents qui appartiennent pour la plupart au genre de la science-fiction (Matrix, Dark City, Avalon, Resident Evil, Avatar,...). Issue de la filmologie, la notion de « diégèse » y est développée à la fois dans le potentiel d'autonomisation dont témoigne la conception mondaine qui semble dominer aujourd'hui à l'ère des jeux vidéo, dans ses liens avec le récit et dans une perspective intermédiale. Les films discutés ont la particularité de mettre en scène des machines permettant aux personnages de passer d'un monde à l'autre : les modes de figuration de ces technologies sont investigués en lien avec les imaginaires du dispositif cinématographique et les potentialité du montage. La comparaison entre les films (Tron et son récent sequel, Totall Recall et son remake) et entre des oeuvres filmiques et littéraires (en particulier les nouvelles de Philip K. Dick et Simlacron 3 de Galouye) constitue un outil d'analyse permettant de saisir la contemporanéité de cette problématique, envisagée sur le plan esthétique dans le contexte de l'imagerie numérique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This poster provides advice on the use of condoms as a method of protection from unplanned pregnancy and sexually transmitted infections (STIs). It also provides contact details for the�Genito Urinary Medicine (GUM) clinics in Northern Ireland.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A blind speech watermarking scheme that meets hard real-time deadlines is presented and implemented. In addition, one of the key issues in these block-oriented watermarking techniques is to preserve the synchronization. Namely, to recover the exact position of each block in the mark extract process. In fact, the presented scheme can be split up into two distinguished parts, the synchronization and the information mark methods. The former is embedded into the time domain and it is fast enough to be run meeting real-time requirements. The latter contains the authentication information and it is embedded into the wavelet domain. The synchronization and information mark techniques are both tunable in order to allow a con gurable method. Thus, capacity, transparency and robustness can be con gured depending on the needs. It makes the scheme useful for professional applications, such telephony authentication or even sending information throw radio applications.