956 resultados para swimming crab
Resumo:
Reports of high mortality resulting from the impoundment of crabs (Callinectes sapidus) during the preshedding period, to produce soft crabs, have been current in Maryland and Virginia for many years. The death rate of crabs on floats has been estimated by certain of the operators to run as high as 86% at Cape Charles, and to figures nearly as high at Crisfield and elsewhere during one season of the year. A study of this mortality and the factors influencing it have been in progress at the Chesapeake Biological Laboratory for two seasons.
Resumo:
This report contains the latest and most complete figures available on Maryland's crab industry for 1950. In it the amount and the value of crabs have been recorded on monthly, gear, and area bases.
Resumo:
The effects of commercial fishing with crab pots on the physical condition of the snow crab (Chionoecetes opilio) and southern Tanner crab (C. bairdi) were investigated in the Bering Sea and in Russian waters of the Sea of Okhotsk. In crabs that were subjected to pot hauling, the presence of gas embolism and the deformation of gill lamellae were found in histopathological investigations. Crab vitality, which was characterized subjectively through observation of behavioral responses, depended on not only the number of pot hauls but also the time between hauls. Immediately after repeated pot hauls at short time intervals (≤3 days), we observed a rapid decline in vitality of crabs. When hauling intervals were increased to >3 days, the condition of crabs did not significantly change. After repeated pot hauls, concentration of the respiratory pigment hemocyanin ([Hc]) was often lower in the hemolymph of crabs than in the hemolymph of freshly caught animals. Our research indicated that changes in [Hc] in crabs after repeated pot hauls were caused by the effects of decompression and not by starvation of crabs in pots or exposure of crabs to air. We suggest that the decrease in [Hc] in hemolymph of snow and southern Tanner crabs was a response to the adverse effects of decompression and air-bubble disease. The decrease in [Hc] in affected crabs may be a result of mechanisms that regulate internal pressure in damaged gills to optimize respiratory circulation.
Resumo:
The near-surface motility of bacteria is important in the initial formation of biofilms and in many biomedical applications. The swimming motion of Escherichia coli near a solid surface is investigated both numerically and experimentally. A boundary element method is used to predict the hydrodynamic entrapment of E. coli bacteria, their trajectories, and the minimum separation of the cell from the surface. The numerical results show the existence of a stable swimming distance from the boundary that depends only on the shape of the cell body and the flagellum. The experimental validation of the numerical approach allows one to use the numerical method as a predictive tool to estimate with reasonable accuracy the near-wall motility of swimming bacteria of known geometry. The analysis of the numerical database demonstrated the existence of a correlation between the radius of curvature of the near-wall circular trajectory and the separation gap. Such correlation allows an indirect estimation of either of the two quantities by a direct measure of the other without prior knowledge of the cell geometry. This result may prove extremely important in those biomedical and technical applications in which the near-wall behavior of bacteria is of fundamental importance.
Resumo:
A pilot study on the characteristics of crab pot buoy line movements to assess bottlenose dolphin entanglement was conducted from 19 September to 30 September 2005 in the Charleston Harbor, Charleston, South Carolina. The objectives of this study were to determine: 1) the movements of the buoy line in the water at various tidal stages, current strengths, lengths of line, and water depth, 2) if lead-core rope was a better alternative to nylon rope, 3) and if the manner of deployment of the gear affected the suspension of the line in the water and on the bottom. Diamond braided nylon (#10) rope of varying length (20 ft. – 80 ft.) were used during 31 trials and stiffened (polypropylene lead-core) rope was used in four trials. Observations of the buoy line movements were captured with an Atlantis underwater camera attached to a Digital DPC-1000 video recorder. Results from this study showed that: 1) the method used for deployment was important in keeping the buoy line from arcing or coiling, 2) little to no arcing occurred in water current velocities of >0.20 m/s, 3) rope lengths of ≥50 ft. deployed in <10 ft. of water produced waving in the water column and arcing on the bottom, 4) slack tide was a period of increased risk of entanglement for bottlenose dolphins, and 5) poly lead-core rope was not a good alternative to nylon rope unless in deep water with strong water current velocities. This pilot study produced questions that can be used for future studies on the characteristics of buoy line movements in the crab pot fishery as it relates to bottlenose dolphin entanglements.
Resumo:
The impacts of widening and deepening the existing navigation channel in Grays Harbor on Dungeness crab, crangon shrimp and fish was investigated. The spatial and temporal distribution of these organisms was studied using an otter trawl and ring nets, and the uptake of organisms by dredges was estimated from samples collected on working hopper and pipeline dredges. ... Impacts of the dredging project on crabs, shrimp and fish could be associated with entrainment, food loss and toxicants released from sediments. Scenarios are presented that predict impacts. Suggestions for reducing impacts are given.
Resumo:
Dungeness crabs (Cancer magister) were sampled with commercial pots and counted by scuba divers on benthic transects at eight sites near Glacier Bay, Alaska. Catch per unit of effort (CPUE) from pots was compared to the density estimates from dives to evaluate the bias and power of the two techniques. Yearly sampling was conducted in two seasons: April and September, from 1992 to 2000. Male CPUE estimates from pots were significantly lower in April than in the following September; a step-wise regression demonstrated that season accounted for more of the variation in male CPUE than did temperature. In both April and September, pot sampling was significantly biased against females. When females were categorized as ovigerous and nonovigerous, it was clear that ovigerous females accounted for the majority of the bias because pots were not biased against nonovigerous females. We compared the power of pots and dive transects in detecting trends in populations and found that pots had much higher power than dive transects. Despite their low power, the dive transects were very useful for detecting bias in our pot sampling and in identifying the optimal times of year to sample so that pot bias could be avoided.
Resumo:
The relative abundance of Bristol Bay red king crab (Paralithodes camtschaticus) is estimated each year for stock assessment by using catch-per-swept-area data collected on the Alaska Fisheries Science Center’s annual eastern Bering Sea bottom trawl survey. To estimate survey trawl capture efficiency for red king crab, an experiment was conducted with an auxiliary net (fitted with its own heavy chain-link footrope) that was attached beneath the trawl to capture crabs escaping under the survey trawl footrope. Capture probability was then estimated by fitting a model to the proportion of crabs captured and crab size data. For males, mean capture probability was 72% at 95 mm (carapace length), the size at which full vulnerability to the survey trawl is assigned in the current management model; 84.1% at 135 mm, the legal size for the fishery; and 93% at 184 mm, the maximum size observed in this study. For females, mean capture probability was 70% at 90 mm, the size at which full vulnerability to the survey trawl is assigned in the current management model, and 77% at 162 mm, the maximum size observed in this study. The precision of our estimates for each sex decreased for juveniles under 60 mm and for the largest crab because of small sample sizes. In situ data collected from trawl-mounted video cameras were used to determine the importance of various factors associated with the capture of individual crabs. Capture probability was significantly higher when a crab was standing when struck by the footrope, rather than crouching, and higher when a crab was hit along its body axis, rather than from the side. Capture probability also increased as a function of increasing crab size but decreased with increasing footrope distance from the bottom and when artificial light was provided for the video camera.
Resumo:
The blue crab (Callinectes sapidus) plays an important economic and ecological role in estuaries and coastal habitats from the Gulf of Mexico to the east coast of North America, but demographic assessments are limited by length-based methods. We applied an alternative aging method using biochemical measures of metabolic byproducts (lipofuscins) sequestered in the neural tissue of eyestalks to examine population age structure. From Chesapeake Bay, subsamples of animals collected from the 1998–99 (n=769) and 1999–2000 (n=367) winter dredge surveys were collected and lipofuscin was measured. Modal analysis of the lipofuscin index provided separation into three modes, whereas carapace-width data collected among the same individuals showed two broad modes. Lipofuscin modal analysis indicated that most adults (carapace width >120 mm) were <2 years old. The results indicate that use of extractable lipofuscin can provide a more accurate and better resolved estimation of demographic structure of blue crab populations in the field than size alone.