968 resultados para surface area
Resumo:
The specific surface area (SSA) of single-walled carbon nanotubes (SWNTs) has been measured by different groups. Fujiwara et al. measured the SSA of SWNT bundles by using nitrogen and oxygen as adsorbates, and found that the SSA from O2-adsorption was 6.6% larger than that from N2-adsorption for the same SWNT sample [1]. Also Wei et al. [2] measured the SSA of HiPco SWNTs by using O2, N2 and Ar, and found that, for the same samples, Vm(Ar) > Vm(O2) > Vm(N2), here Vm is the monolayer adsorption capacity at the standard conditions of temperature and pressure (STP). Those research results indicate that, for the same SWNT sample, its measured surface area depends on the employed adsorbate.
Adsorption of argon on homogeneous graphitized thermal carbon black and heterogeneous carbon surface
Resumo:
In this paper we investigate the effects of surface mediation on the adsorption behavior of argon at different temperatures on homogeneous graphitized thermal carbon black and on heterogeneous nongraphitized carbon black surface. The grand canonical Monte Carlo (GCMC) simulation is used to study the adsorption, and its performance is tested against a number of experimental data on graphitized thermal carbon black (which is known to be highly homogeneous) that are available in the literature. The surface-mediation effect is shown to be essential in the correct description of the adsorption isotherm because without accounting for that effect the GCMC simulation results are always greater than the experimental data in the region where the monolayer is being completed. This is due to the overestimation of the fluid–fluid interaction between particles in the first layer close to the solid surface. It is the surface mediation that reduces this fluid–fluid interaction in the adsorbed layers, and therefore the GCMC simulation results accounting for this surface mediation that are presented in this paper result in a better description of the data. This surface mediation having been determined, the surface excess of argon on heterogeneous carbon surfaces having solid–fluid interaction energies different from the graphite can be readily obtained. Since the real heterogeneous carbon surface is not the same as the homogeneous graphite surface, it can be described by an area distribution in terms of the well depth of the solid–fluid energy. Assuming a patchwise topology of the surface with patches of uniform well depth of solid–fluid interaction, the adsorption on a real carbon surface can be determined as an integral of the local surface excess of each patch with respect to the differential area. When this is matched against the experimental data of a carbon surface, we can derive the area distribution versus energy and hence the geometrical surface area. This new approach will be illustrated with the adsorption of argon on a nongraphitized carbon at 87.3 and 77 K, and it is found that the GCMC surface area is different from the BET surface area by about 7%. Furthermore, the description of the isotherm in the region of BET validity of 0.06 to 0.2 is much better with our method than with the BET equation.
Resumo:
A mathematical model is presented for steady fluid flow across microvessel walls through a serial pathway consisting of the endothelial surface glycocalyx and the intercellular cleft between adjacent endothelial cells, with junction strands and their discontinuous gaps. The three-dimensional flow through the pathway from the vessel lumen to the tissue space has been computed numerically based on a Brinkman equation with appropriate values of the Darcy permeability. The predicted values of the hydraulic conductivity Lp, defined as the ratio of the flow rate per unit surface area of the vessel wall to the pressure drop across it, are close to experimental measurements for rat mesentery microvessels. If the values of the Darcy permeability for the surface glycocalyx are determined based on the regular arrangements of fibres with 6nm radius and 8nm spacing proposed recently from the detailed structural measurements, then the present study suggests that the surface glycocalyx could be much less resistant to flow compared to previous estimates by the one-dimensional flow analyses, and the intercellular cleft could be a major determinant of the hydraulic conductivity of the microvessel wall.
Resumo:
In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS) , Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 x 800 nm) to (115 x 115µm), and (800 x 800 nm) to (40 x 40 µm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 x 115 µm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns.
Resumo:
Biofouling, the accumulation of biomolecules, cells, organisms and their deposits on submerged and implanted surfaces, is a ubiquitous problem across various human endeavors including maritime operations, medicine, food industries and biotechnology. Since several decades, there have been substantial research efforts towards developing various types of antifouling and fouling release approaches to control bioaccumulation on man-made surfaces. In this work we hypothesized, investigated and developed dynamic change of the surface area and topology of elastomers as a general approach for biofouling management. Further, we combined dynamic surface deformation of elastomers with other existing antifouling and fouling-release approaches to develop multifunctional, pro-active biofouling control strategies.
This research work was focused on developing fundamental, new and environment-friendly approaches for biofouling management with emphasis on marine model systems and applications, but which also provided fundamental insights into the control of infectious biofilms on biomedical devices. We used different methods (mechanical stretching, electrical-actuation and pneumatic-actuation) to generate dynamic deformation of elastomer surfaces. Our initial studies showed that dynamic surface deformation methods are effective in detaching laboratory grown bacterial biofilms and barnacles. Further systematic studies revealed that a threshold critical surface strain is required to debond a biofilm from the surface, and this critical strain is dependent on the biofilm mechanical properties including adhesion energy, thickness and modulus. To test the dynamic surface deformation approach in natural environment, we conducted field studies (at Beaufort, NC) in natural seawater using pneumatic-actuation of silicone elastomer. The field studies also confirmed that a critical substrate strain is needed to detach natural biofilm accumulated in seawater. Additionally, the results from the field studies suggested that substrate modulus also affect the critical strain needed to debond biofilms. To sum up, both the laboratory and the field studies proved that dynamic surface deformation approach can effectively detach various biofilms and barnacles, and therefore offers a non-toxic and environmental friendly approach for biofouling management.
Deformable elastomer systems used in our studies are easy to fabricate and can be used as complementary approach for existing commercial strategies for biofouling control. To this end, we aimed towards developed proactive multifunctional surfaces and proposed two different approaches: (i) modification of elastomers with antifouling polymers to produce multifunctional, and (ii) incorporation of silicone-oil additives into the elastomer to enhance fouling-release performance.
In approach (i), we modified poly(vinylmethylsiloxane) elastomer surfaces with zwitterionic polymers using thiol-ene click chemistry and controlled free radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionalities. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. In approach (ii), we incorporated silicone-oil additives in deformable elastomer and studied synergistic effect of silicone-oils and surface strain on barnacle detachment. We hypothesized that incorporation of silicone-oil additive reduces the amount of surface strain needed to detach barnacles. Our experimental results supported the above hypothesis and suggested that surface-action of silicone-oils plays a major role in decreasing the strain needed to detach barnacles. Further, we also examined the effect of change in substrate modulus and showed that stiffer substrates require lower amount of strain to detach barnacles.
In summary, this study shows that (1) dynamic surface deformation can be used as an effective, environmental friendly approach for biofouling control (2) stretchable elastomer surfaces modified with anti-fouling polymers provides a pro-active, dual-mode approach for biofouling control, and (3) incorporation of silicone-oils additives into stretchable elastomers improves the fouling-release performance of dynamic surface deformation technology. Dynamic surface deformation by itself and as a supplementary approach can be utilized biofouling management in biomedical, industrial and marine applications.
Resumo:
This collection contains measurements of vegetation and soil surface cover measured on the plots of the different sub-experiments at the field site of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. The following series of datasets are contained in this collection: 1. Measurements of vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the species that have been sown into the plots to create the gradient of plant diversity.
Resumo:
International audience
Resumo:
The aim of this study was to determine the collection efficiency of ultrafine particles into an impinger fitted with a fritted nozzle tip as a means to increase contact surface area between the aerosol and the liquid. The influence of liquid sampling volume, frit porosity and the nature of the sampling liquid was explored and it was shown that all impact on the collection efficiency of particles smaller than 220 nm. Obtained values for overall collection efficiency were substantially higher (~30–95%) than have been previously reported, mainly due to the high deposition of particles in the fritted nozzle tip, especially in case of finer porosity frits and smaller particles. Values for the capture efficiency of the solvent alone ranged from 20 to 45%, depending on the type and the volume of solvent. Additionally, our results show that airstream dispersion into bubbles improves particle trapping by the liquid and that there is a difference in collection efficiencies based on the nature and volume of the solvent used.
Resumo:
In this experimental study the permeability of Australian bagasse chemical pulps obtained from different bagasse fractions were measured in a simple permeability cell and the results compared to one another as well as to eucalypt, Argentinean bagasse and pine pulps. The pulps were characterised in terms of the permeability parameters, the specific surface area, Sv, and the swelling factor, α. It was found that the bagasse fraction used affects these parameters. Fractionation of whole bagasse prior to pulping produced pulps that have permeability properties that compare favourably with eucalypt pulp. The values of Sv and α for bagasse pulp also depend on whether a constant or a variable Kozeny factor is used.
Resumo:
Differential axial shortening, distortion and deformation in high rise buildings is a serious concern. They are caused by three time dependent modes of volume change; “shrinkage”, “creep” and “elastic shortening” that takes place in every concrete element during and after construction. Vertical concrete components in a high rise building are sized and designed based on their strength demand to carry gravity and lateral loads. Therefore, columns and walls are sized, shaped and reinforced differently with varying concrete grades and volume to surface area ratios. These structural components may be subjected to the detrimental effects of differential axial shortening that escalates with increasing the height of buildings. This can have an adverse impact on other structural and non-structural elements. Limited procedures are available to quantify axial shortening, and the results obtained from them differ because each procedure is based on various assumptions and limited to few parameters. All these prompt to a need to develop an accurate numerical procedure to quantify the axial shortening of concrete buildings taking into account the important time varying functions of (i) construction sequence (ii) Young’s Modulus and (iii) creep and shrinkage models associated with reinforced concrete. General assumptions are refined to minimize variability of creep and shrinkage parameters to improve accuracy of the results. Finite element techniques are used in the procedure that employs time history analysis along with compression only elements to simulate staged construction behaviour. This paper presents such a procedure and illustrates it through an example. Keywords: Differential Axial Shortening, Concrete Buildings, Creep and Shrinkage, Construction Sequence, Finite Element Method.
Resumo:
The aim of this work was to review the existing instrumental methods to monitor airborne nanoparticle in different types of indoor and outdoor environments in order to detect their presence and to characterise their properties. Firstly the terminology and definitions used in this field are discussed, which is followed by a review of the methods to measure particle physical characteristics including number concentration, size distribution and surface area. An extensive discussion is provided on the direct methods for particle elemental composition measurements, as well as on indirect methods providing information on particle volatility and solubility, and thus in turn on volatile and semivolatile compounds of which the particle is composed. A brief summary of broader considerations related to nanoparticle monitoring in different environments concludes the paper.
Resumo:
In this work, natural palygorskite impregnated with zero-valent iron (ZVI) was prepared and characterised. The combination of ZVI particles on surface of fibrous palygorskite can help to overcome the disadvantage of ultra-fine powders which may have strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. There is a significant increase of methylene blue (MB) decolourized efficiency on acid treated palygorskite with ZVI grafted, within 5 mins, the concentration of MB in the solution was decreased from 94 mg/L to around 20 mg/L and the equilibration was reached at about 30 to 60 mins with only around 10 mg/L MB remained in solution. Changes in the surface and structure of prepared materials were characterized using X-ray diffraction (XRD), infrared (IR) spectroscopy, surface analysing and scanning electron microscopy (SEM) with element analysis and mapping. Comparing with zero-valent iron and palygorskite, the presence of zero-valent iron reactive species on the palygorskite surface strongly increases the decolourization capacity for methylene blue, and it is significant for providing novel modified clay catalyst materials for the removal of organic contaminants from waste water.
Resumo:
Exposure to particles emitted by cooking activities may be responsible for a variety of respiratory health effects. However, the relationship between these exposures and their subsequent effects on health cannot be evaluated without understanding the properties of the emitted aerosol or the main parameters that influence particle emissions during cooking. Whilst traffic-related emissions, stack emissions and ultrafine particle concentrations (UFP, diameter < 100 nm) in urban ambient air have been widely investigated for many years, indoor exposure to UFPs is a relatively new field and in order to evaluate indoor UFP emissions accurately, it is vital to improve scientific understanding of the main parameters that influence particle number, surface area and mass emissions. The main purpose of this study was to characterise the particle emissions produced during grilling and frying as a function of the food, source, cooking temperature and type of oil. Emission factors, along with particle number concentrations and size distributions were determined in the size range 0.006-20 m using a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). An infrared camera was used to measure the temperature field. Overall, increased emission factors were observed to be a function of increased cooking temperatures. Cooking fatty foods also produced higher particle emission factors than vegetables, mainly in terms of mass concentration, and particle emission factors also varied significantly according to the type of oil used.
Resumo:
Sandy soils have low water and nutrient retention capabilities so that zeolite soil amendments are used for high value land uses including turf and horticulture to reduce leaching losses of NH4+ fertilisers. MesoLite is a zeolitic material made by caustic treatment of kaolin at 80-95oC. It has a moderately low surface area (9-12m2/g) and very high cation exchange capacity (494 cmol(+)/kg). Laboratory column experiments showed that an addition of 0.4% MesoLite to a sandy soil greatly (90%) reduced leaching of added NH4+ compared to an unamended soil and MesoLite is 11 times more efficient in retaining NH4+ than natural zeolite. Furthermore, NH4+-MesoLite slowly releases NH4+ to soil solution and is likely to be an effective slow release fertiliser.