989 resultados para surface antigen
Resumo:
OBJECTIVE: To investigate HIV-related immunodeficiency as a risk factor for hepatocellular carcinoma (HCC) among persons infected with HIV, while controlling for the effect of frequent coinfection with hepatitis C and B viruses. DESIGN: A case-control study nested in the Swiss HIV Cohort Study. METHODS: Twenty-six HCC patients were identified in the Swiss HIV Cohort Study or through linkage with Swiss Cancer Registries, and were individually matched to 251 controls according to Swiss HIV Cohort Study centre, sex, HIV-transmission category, age and year at enrollment. Odds ratios and corresponding confidence intervals were estimated by conditional logistic regression. RESULTS: All HCC patients were positive for hepatitis B surface antigen or antibodies against hepatitis C virus. HCC patients included 14 injection drug users (three positive for hepatitis B surface antigen and 13 for antibodies against hepatitis C virus) and 12 men having sex with men/heterosexual/other (11 positive for hepatitis B surface antigen, three for antibodies against hepatitis C virus), revealing a strong relationship between HIV transmission route and hepatitis viral type. Latest CD4+ cell count [Odds ratio (OR) per 100 cells/mul decrease = 1.33, 95% confidence interval (CI) 1.06-1.68] and CD4+ cell count percentage (OR per 10% decrease = 1.65, 95% CI 1.01-2.71) were significantly associated with HCC. The effects of CD4+ cell count were concentrated among men having sex with men/heterosexual/other rather than injecting drug users. Highly active antiretroviral therapy use was not significantly associated with HCC risk (OR for ever versus never = 0.59, 95% confidence interval 0.18-1.91). CONCLUSION: Lower CD4+ cell counts increased the risk for HCC among persons infected with HIV, an effect that was particularly evident for hepatitis B virus-related HCC arising in non-injecting drug users.
Resumo:
Hepatitis B virus (HBV) infection is a major cause of morbidity and mortality in human immunodeficiency virus (HIV)-infected patients worldwide. It is unclear whether HIV-related outcomes are affected by HBV coinfection. We compared virological suppression and immunological recovery during antiretroviral therapy (ART) of patients of different HBV serological status in the Swiss HIV Cohort Study. CD4 cell recovery during ART was significantly impaired in hepatitis B surface antigen-positive patients and in those with anti-hepatitis B core antigen alone compared with HBV-uninfected patients, despite similar virological efficacy of ART. CD4 increase in patients with resolved HBV infection was similar to that in HBV-uninfected individuals.
Resumo:
BACKGROUND AND AIMS We investigated the association between significant liver fibrosis, determined by AST-to-platelet ratio index (APRI), and all-cause mortality among HIV-infected patients prescribed antiretroviral therapy (ART) in Zambia METHODS: Among HIV-infected adults who initiated ART, we categorized baseline APRI scores according to established thresholds for significant hepatic fibrosis (APRI ≥1.5) and cirrhosis (APRI ≥2.0). Using multivariable logistic regression we identified risk factors for elevated APRI including demographic characteristics, body mass index (BMI), HIV clinical and immunologic status, and tuberculosis. In the subset tested for hepatitis B surface antigen (HBsAg), we investigated the association of hepatitis B virus co-infection with APRI score. Using Kaplan-Meier analysis and Cox proportional hazards regression we determined the association of elevated APRI with death during ART. RESULTS Among 20,308 adults in the analysis cohort, 1,027 (5.1%) had significant liver fibrosis at ART initiation including 616 (3.0%) with cirrhosis. Risk factors for significant fibrosis or cirrhosis included male sex, BMI <18, WHO clinical stage 3 or 4, CD4+ count <200 cells/mm(3) , and tuberculosis. Among the 237 (1.2%) who were tested, HBsAg-positive patients had four times the odds (adjusted odds ratio, 4.15; 95% CI, 1.71-10.04) of significant fibrosis compared HBsAg-negatives. Both significant fibrosis (adjusted hazard ratio 1.41, 95% CI, 1.21-1.64) and cirrhosis (adjusted hazard ratio 1.57, 95% CI, 1.31-1.89) were associated with increased all-cause mortality. CONCLUSION Liver fibrosis may be a risk factor for mortality during ART among HIV-infected individuals in Africa. APRI is an inexpensive and potentially useful test for liver fibrosis in resource-constrained settings. This article is protected by copyright. All rights reserved.
Resumo:
Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5'UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export.
Resumo:
BACKGROUND Hepatitis B viruses (HBV) harboring mutations in the a-determinant of the Hepatitis B surface antigen (HBsAg) are associated with reduced reactivity of HBsAg assays. OBJECTIVES To evaluate the sensitivity and specificity of three HBsAg point-of-care tests for the detection of HBsAg of viruses harboring HBsAg mutations. STUDY DESIGN A selection of 50 clinical plasma samples containing HBV with HBsAg mutations was used to evaluate the performance of three HBsAg point-of-care tests (Vikia(®), bioMérieux, Marcy-L'Étoile, France. Alere Determine HBsAg™, Iverness Biomedical Innovations, Köln, Germany. Quick Profile™, LumiQuick Diagnostics, California, USA) and compared to the ARCHITECT HBsAg Qualitative(®) assay (Abbott Laboratories, Sligo, Ireland). RESULTS The sensitivity of the point-of-care tests ranged from 98% to 100%. The only false-negative result occurred using the Quick Profile™ assay with a virus harboring a D144A mutation. CONCLUSIONS The evaluated point-of-care tests revealed an excellent sensitivity in detecting HBV samples harboring HBsAg mutations.
Resumo:
Cattle immunised with a recombinant form of p67, the major surface antigen of Theileria parva sporozoites, have been shown to be protected against parasite challenge. In an attempt to simplify the immunisation procedure live attenuated Salmonella strains expressing p67 have been constructed and used to induce anti-p67 immune responses in cattle. All animals immunised with these strains developed strong antibody responses to p67. Specific T cell responses could be detected in the majority of immunised cattle. Challenge with T. parva sporozoites revealed a significant level of protection in immunised calves compared to naive control animals or animals inoculated with non-recombinant attenuated Salmonella.
Resumo:
A longitudinal investigation of the health effects and reservoirs of Giardia lamblia was undertaken in forty households located in a rural Nile Delta region of Egypt. Stool specimens obtained once weekly for six months from two to four year old children were cyst or trophozoite-positive in 42 percent of the 724 examined. The mean duration of excretion in all but one Giardia-negative child was seven and one-half weeks with a range of one to 17 weeks. Clinical symptoms of illness were frequently observed within a month before or after Giardia excretion in stool of children, but a statistical inference of association was not demonstrated.^ Seventeen percent of 697 specimens obtained from their mothers was Giardia-positive for a mean duration of four weeks and a range of one to 18 weeks. Mothers were observed to excrete Giardia in stool less frequently during pregnancy than during lactation.^ Nine hundred sixty-two specimens were collected from 13 species of household livestock. Giardia was detected in a total of 22 specimens from cows, goats, sheep and one duck. Giardia cysts were detected in three of 899 samples of household drinking water.^ An ELISA technique of Giardia detection in human and animal stool was field tested under variable environmental conditions. The overall sensitivity of the assay of human specimens was 74 percent and specificity was 97 percent. These values for assay of animal specimens were 82 percent and 98 percent, respectively.^ Surface antigen studies reported from the NIH Laboratory of Parasitic Diseases show that antigens of three Egyptian human isolates are different from each other and from most other isolates against which they were tested.^ The ubiquity of human and animal fecal contamination combined with estimates of ill days per child per year in this setting are substantial arguments for the introduction of a suggested mass parasite control program to intervene in the cyclical transmission of agents of enteric disease. ^
Resumo:
Background and aim. Hepatitis B virus (HBV) and hepatitis C virus (HCV) co-infection is associated with increased risk of cirrhosis, decompensation, hepatocellular carcinoma, and death. Yet, there is sparse epidemiologic data on co-infection in the United States. Therefore, the aim of this study was to determine the prevalence and determinants of HBV co-infection in a large United States population of HCV patients. ^ Methods. The National Veterans Affairs HCV Clinical Case Registry was used to identify patients tested for HCV during 1997–2005. HCV exposure was defined as two positive HCV tests (antibody, RNA or genotype) or one positive test combined with an ICD-9 code for HCV. HCV infection was defined as only a positive HCV RNA or genotype. HBV exposure was defined as a positive test for hepatitis B core antibodies, hepatitis B surface antigen, HBV DNA, hepatitis Be antigen, or hepatitis Be antibody. HBV infection was defined as only a positive test for hepatitis B surface antigen, HBV DNA, or hepatitis Be antigen within one year before or after the HCV index date. The prevalence of exposure to HBV in patients with HCV exposure and the prevalence of HBV infection in patients with HCV infection were determined. Multivariable logistic regression was used to identify demographic and clinical determinants of co-infection. ^ Results. Among 168,239 patients with HCV exposure, 58,415 patients had HBV exposure for a prevalence of 34.7% (95% CI 34.5–35.0). Among 102,971 patients with HCV infection, 1,431 patients had HBV co-infection for a prevalence of 1.4% (95% CI 1.3–1.5). The independent determinants for an increased risk of HBV co-infection were male sex, positive HIV status, a history of hemophilia, sickle cell anemia or thalassemia, history of blood transfusion, cocaine and other drug use. Age >50 years and Hispanic ethnicity were associated with a decreased risk of HBV co-infection. ^ Conclusions. This is the largest cohort study in the United States on the prevalence of HBV co-infection. Among veterans with HCV, exposure to HBV is common (∼35%), but HBV co-infection is relatively low (1.4%). There is an increased risk of co-infection with younger age, male sex, HIV, and drug use, with decreased risk in Hispanics.^
Resumo:
A chimeric retroviral vector (33E67) containing a CD33-specific single-chain antibody was generated in an attempt to target cells displaying the CD33 surface antigen. The chimeric envelope protein was translated, processed, and incorporated into viral particles as efficiently as wild-type envelope protein. The viral particles carrying the 33E67 envelope protein could bind efficiently to the CD33 receptor on target cells and were internalized, but no gene transfer occurred. A unique experimental approach was used to examine the basis for this postbinding block. Our data indicate that the chimeric envelope protein itself cannot participate in the fusion process, the most reasonable explanation being that this chimeric protein cannot undergo the appropriate conformational change that is thought to be triggered by receptor binding, a suggested prerequisite to subsequent fusion and core entry. These results indicate that the block to gene transfer in this system, and probably in most of the current chimeric retroviral vectors to date, is the inability of the chimeric envelope protein to undergo this obligatory conformational change.
Resumo:
Hepatitis B viruses (HBV) and related viruses, classified in the Hepadnaviridae family, are found in a wide variety of mammals and birds. Although the chimpanzee has been the primary experimental model of HBV infection, this species has not been considered a natural host for the virus. Retrospective analysis of 13 predominantly wild-caught chimpanzees with chronic HBV infection identified a unique chimpanzee HBV strain in 11 animals. Nucleotide and derived amino acid analysis of the complete HBV genome and the gene coding for the hepatitis B surface antigen (S gene) identified sequence patterns that could be used to reliably identify chimpanzee HBV. This analysis indicated that chimpanzee HBV is distinct from known human HBV genotypes and is closely related to HBVs previously isolated from a chimpanzee, gibbons, gorillas, and orangutans.
Resumo:
Prostate stem-cell antigen (PSCA) is a cell-surface antigen expressed in normal prostate and overexpressed in prostate cancer tissues. PSCA expression is detected in over 80% of patients with local disease, and elevated levels of PSCA are correlated with increased tumor stage, grade, and androgen independence, including high expression in bone metastases. We evaluated the therapeutic efficacy of anti-PSCA mAbs in human prostate cancer xenograft mouse models by using the androgen-dependent LAPC-9 xenograft and the androgen-independent recombinant cell line PC3-PSCA. Two different anti-PSCA mAbs, 1G8 (IgG1κ) and 3C5 (IgG2aκ), inhibited formation of s.c. and orthotopic xenograft tumors in a dose-dependent manner. Furthermore, administration of anti-PSCA mAbs led to retardation of established orthotopic tumor growth and inhibition of metastasis to distant sites, resulting in a significant prolongation in the survival of tumor-bearing mice. These studies suggest PSCA as an attractive target for immunotherapy and demonstrate the therapeutic potential of anti-PSCA mAbs for the treatment of local and metastatic prostate cancer.
Resumo:
Cytotoxic T lymphocytes are important effectors of antiviral immunity, and they induce target cell death either by secretion of cytoplasmic granules containing perforin and granzymes or by signaling through the Fas cell surface antigen. Although it is not known whether the granule-mediated and Fas-mediated cytolytic mechanisms share common components, proteinase activity has been implicated as an important feature of both pathways. The orthopoxviruses cowpox virus and rabbitpox virus each encode three members of the serpin family of proteinase inhibitors, designated SPI-1, SPI-2, and SPI-3. Of these, SPI-2 (also referred to as cytokine response modifier A in cowpox virus) has been shown to inhibit the proteolytic activity of both members of the interleukin 1 beta converting enzyme family and granzyme B. We report here that cells infected with cowpox or rabbitpox viruses exhibit resistance to cytolysis by either cytolytic mechanism. Whereas mutation of the cytokine response modifier A/SPI-2 gene was necessary to relieve inhibition of Fasmediated cytolysis, in some cell types mutation of SPI-1, in addition to cytokine response modifier A/SPI-2, was necessary to completely abrogate inhibition. In contrast, viral inhibition of granule-mediated killing was unaffected by mutation of cytokine response modifier A/SPI-2 alone, and it was relieved only when both the cytokine response modifier A/SPI-2 and SPI-1 genes were inactivated. These results suggest that an interleukin 1 beta converting enzyme-like enzymatic activity is involved in both killing mechanisms and indicate that two viral proteins, SPI-1 and cytokine response modifier A/SPI-2, are necessary to inhibit both cytolysis pathways.
Resumo:
The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected.
Resumo:
Using transgenic mice that replicate the hepatitis B virus (HBV) genome, we recently demonstrated that class I-restricted, hepatitis B surface antigen-specific cytotoxic T lymphocytes (CTLs) can noncytolytically eliminate HBV pregenomic and envelope RNA transcripts from the hepatocyte. We now demonstrate that the steady-state content of these viral transcripts is profoundly reduced in the nucleus and cytoplasm of CTL-activated hepatocytes, but their transcription rates are only slightly reduced. Additionally, we demonstrate that transcripts covering the HBV X coding region are resistant to downregulation by the CTL. These results imply the existence of CTL-inducible hepatocellular factors that interact with a discrete element(s) between nucleotides 3157 and 1239 within the viral pregenomic and envelope transcripts and mediate their degradation, thus converting the hepatocyte from a passive victim to an active participant in the host response to HBV infection.
Resumo:
A nanotecnologia tornou possível estruturar nanopartículas (NPs), utilizando-se polímeros biodegradáveis e atóxicos, como a quitosana (QS) - capaz de carrear e disponibilizar antígenos para a mucosa, devido sua propriedade mucoadesiva. Uma vacina liofilizada, em comparação a uma formulação líquida, possui inúmeras vantagens, tais como melhora na estabilidade do produto e melhor resistência às variações de temperatura, aumentando sua vida de prateleira e possibilitando melhor logística do produto aos locais onde o acesso à rede refrigerada é difícil; ademais, um produto liofilizado tem sua mucoadesividade aumentada, possibilitando maior tempo de permanência na mucosa. O presente trabalho teve como objetivo observar a resposta imune, em camundongos, de uma vacina desenvolvida por um mecanismo de entrega intranasal do HBsAg (Antígeno de superfície da Hepatite B) encapsulado pelo método de incorporação em nanopartículas de quitosana (NPs) liofilizadas. A formação das NPs foi realizada pela interação eletroestática da quitosana e do TPP (tripolifosfato de sódio), utilizando método de geleificação iônica. Formulações de NPs com glicina 5% apresentaram boas características após reconstituição, umidade residual inferior a 1% e processo de liofilização de 13 horas. Foi avaliada a imunogenicidade da inoculação do HBsAg em formulações de NPs de quitosana líquida e liofilizada, verificando-se que a forma líquida produziu anticorpos IgG contra HBsAg.