900 resultados para stretching sheet
Resumo:
The stability of a plane liquid sheet is studied experimentally and theoretically, with an emphasis on the effect of the surrounding gas. Co-blowing with a gas velocity of the same order of magnitude as the liquid velocity is studied, in order to quantify its effect on the stability of the sheet. Experimental results are obtained for a water sheet in air at Reynolds number Rel = 3000 and Weber number We = 300, based on the half-thickness of the sheet at the inlet, water mean velocity at the inlet, the surface tension between water and air and water density and viscosity. The sheet is excited with different frequencies at the inlet and the growth of the waves in the streamwise direction is measured. The growth rate curves of the disturbances for all air flow velocities under study are found to be within 20% of the values obtained from a local spatial stability analysis, where water and air viscosities are taken into account, while previous results from literature assuming inviscid air overpredict the most unstable wavelength with a factor 3 and the growth rate with a factor 2. The effect of the air flow on the stability of the sheet is scrutinized numerically and it is concluded that the predicted disturbance growth scales with (i) the absolute velocity difference between water and air (inviscid effect) and (ii) the square root of the shear from air on the water surface (viscous effect).
Resumo:
Ever increasing demands on functional integration of high strength light weight products leads to the development of a new class of manufacturing processes. The application of bulk forming processes to sheet or plate semi-finished products, sometimes in combination with conventional sheet forming processes creates new products with the requested properties. The paper defines this new class of sheet-bulk metal forming processes, gives an overview of the existing processes belonging to this class, highlights the tooling aspects as well as the resulting product properties and presents a short summary of the relevant work that has been done towards modeling and simulation. © 2012 CIRP.
Resumo:
Light metal sandwich panel structures with cellular cores have attracted interest for multifunctional applications which exploit their high bend strength and impact energy absorption. This concept has been explored here using a model 6061-T6 aluminum alloy system fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core. Micro-hardness and miniature tensile coupon testing revealed that friction stir welding reduced the strength and ductility in the welds and a narrow heat affected zone on either side of the weld by approximately 30%. Square, edge clamped sandwich panels and solid plates of equal mass per unit area were subjected to localized impulsive loading by the impact of explosively accelerated, water saturated, sand shells. The hydrodynamic load and impulse applied by the sand were gradually increased by reducing the stand-off distance between the test charge and panel surfaces. The sandwich panels suffered global bending and stretching, and localized core crushing. As the pressure applied by the sand increased, face sheet fracture by a combination of tensile stretching and shear-off occurred first at the two clamped edges of the panels that were parallel with the corrugation and weld direction. The plane of these fractures always lay within the heat affected zone of the longitudinal welds. For the most intensively loaded panels additional cracks occurred at the other clamped boundaries and in the center of the panel. To investigate the dynamic deformation and fracture processes, a particle-based method has been used to simulate the impulsive loading of the panels. This has been combined with a finite element analysis utilizing a modified Johnson-Cook constitutive relation and a Cockcroft-Latham fracture criterion that accounted for local variation in material properties. The fully coupled simulation approach enabled the relationships between the soil-explosive test charge design, panel geometry, spatially varying material properties and the panel's deformation and dynamic failure responses to be explored. This comprehensive study reveals the existence of a strong instability in the loading that results from changes in sand particle reflection during dynamic evolution of the panel's surface topology. Significant fluid-structure interaction effects are also discovered at the sample sides and corners due to changes of the sand reflection angle by the edge clamping system. © 2012 Elsevier Ltd. All rights reserved.
A Videogrammetric As-Built Data Collection Method for Digital Fabrication of Sheet Metal Roof Panels
Resumo:
A roofing contractor typically needs to acquire as-built dimensions of a roof structure several times over the course of its build to be able to digitally fabricate sheet metal roof panels. Obtaining these measurements using the exiting roof surveying methods could be costly in terms of equipment, labor, and/or worker exposure to safety hazards. This paper presents a video-based surveying technology as an alternative method which is simple to use, automated, less expensive, and safe. When using this method, the contractor collects video streams with a calibrated stereo camera set. Unique visual characteristics of scenes from a roof structure are then used in the processing step to automatically extract as-built dimensions of roof planes. These dimensions are finally represented in a XML format to be loaded into sheet metal folding and cutting machines. The proposed method has been tested for a roofing project and the preliminary results indicate its capabilities.
Resumo:
The paper presents a multiscale procedure for the linear analysis of components made of lattice materials. The method allows the analysis of both pin-jointed and rigid-jointed microtruss materials with arbitrary topology of the unit cell. At the macroscopic level, the procedure enables to determine the lattice stiffness, while at the microscopic level the internal forces in the lattice elements are expressed in terms of the macroscopic strain applied to the lattice component. A numeric validation of the method is described. The procedure is completely automated and can be easily used within an optimization framework to find the optimal geometric parameters of a given lattice material. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Up to 20% of all sheet metal produced is scrapped as blanking skeletons. A novel process is therefore designed and examined, aiming to transform tessellating 'pre-blanks' in-plane into the real blanks required for stamping. Prior to blanking, the sheet is formed with a set of ridged dies, from which pre-blanks are cut and then flattened into true blanks. Several different approaches to designing ridged dies are evaluated by simulation and experiment, and the best results demonstrate a potential reduction in blanking yield losses for can-making from 9.3% to 6.9%. © 2013 CIRP.
Resumo:
Creasing in thin shells admits large deformation by concentrating curvatures while relieving stretching strains over the bulk of the shell: after unloading, the creases remain as narrow ridges and the rest of the shell is flat or simply curved. We present a helically creased unloaded shell that is doubly curved everywhere, which is formed by cylindrically wrapping a flat sheet with embedded foldlines not axially aligned. The finished shell is in a state of uniform self-stress and this is responsible for maintaining the Gaussian curvature outside of the creases in a controllable and persistent manner. We describe the overall shape of the shell using the familiar geometrical concept of a Mohr's circle applied to each of its constituent features-the creases, the regions between the creases, and the overall cylindrical form. These Mohr's circles can be combined in view of geometrical compatibility, which enables the observed shape to be accurately and completely described in terms of the helical pitch angle alone. Copyright © 2013 by ASME.
Resumo:
We demonstrate a stretched contact-printing technique to assemble one-dimensional nanostructures with controlled density and orientation. Over 90% nanowires are highly aligned along the primary stretching direction. Specifically, The hybrid inorganic-organic TFTs based on a parallel-aligned nanowire network and a semiconducting polymer reveal a significant positive enhancement in transistor performance and air-stability.
Resumo:
Liquid crystalline elastomers (LCEs) can undergo extremely large reversible shape changes when exposed to external stimuli, such as mechanical deformations, heating or illumination. The deformation of LCEs result from a combination of directional reorientation of the nematic director and entropic elasticity. In this paper, we study the energetics of initially flat, thin LCE membranes by stress driven reorientation of the nematic director. The energy functional used in the variational formulation includes contributions depending on the deformation gradient and the second gradient of the deformation. The deformation gradient models the in-plane stretching of the membrane. The second gradient regularises the non-convex membrane energy functional so that infinitely fine in-plane microstructures and infinitely fine out-of-plane membrane wrinkling are penalised. For a specific example, our computational results show that a non-developable surface can be generated from an initially flat sheet at cost of only energy terms resulting from the second gradients. That is, Gaussian curvature can be generated in LCE membranes without the cost of stretch energy in contrast to conventional materials. © 2013 Elsevier Ltd. All rights reserved.