951 resultados para statistical distribution
Resumo:
Using path integrals, we derive an exact expression-valid at all times t-for the distribution P(Q,t) of the heat fluctuations Q of a Brownian particle trapped in a stationary harmonic well. We find that P(Q, t) can be expressed in terms of a modified Bessel function of zeroth order that in the limit t > infinity exactly recovers the heat distribution function obtained recently by Imparato et al. Phys. Rev. E 76, 050101(R) (2007)] from the approximate solution to a Fokker-Planck equation. This long-time result is in very good agreement with experimental measurements carried out by the same group on the heat effects produced by single micron-sized polystyrene beads in a stationary optical trap. An earlier exact calculation of the heat distribution function of a trapped particle moving at a constant speed v was carried out by van Zon and Cohen Phys. Rev. E 69, 056121 (2004)]; however, this calculation does not provide an expression for P(Q, t) itself, but only its Fourier transform (which cannot be analytically inverted), nor can it be used to obtain P(Q, t) for the case v=0.
Resumo:
The problem of estimating the time-dependent statistical characteristics of a random dynamical system is studied under two different settings. In the first, the system dynamics is governed by a differential equation parameterized by a random parameter, while in the second, this is governed by a differential equation with an underlying parameter sequence characterized by a continuous time Markov chain. We propose, for the first time in the literature, stochastic approximation algorithms for estimating various time-dependent process characteristics of the system. In particular, we provide efficient estimators for quantities such as the mean, variance and distribution of the process at any given time as well as the joint distribution and the autocorrelation coefficient at different times. A novel aspect of our approach is that we assume that information on the parameter model (i.e., its distribution in the first case and transition probabilities of the Markov chain in the second) is not available in either case. This is unlike most other work in the literature that assumes availability of such information. Also, most of the prior work in the literature is geared towards analyzing the steady-state system behavior of the random dynamical system while our focus is on analyzing the time-dependent statistical characteristics which are in general difficult to obtain. We prove the almost sure convergence of our stochastic approximation scheme in each case to the true value of the quantity being estimated. We provide a general class of strongly consistent estimators for the aforementioned statistical quantities with regular sample average estimators being a specific instance of these. We also present an application of the proposed scheme on a widely used model in population biology. Numerical experiments in this framework show that the time-dependent process characteristics as obtained using our algorithm in each case exhibit excellent agreement with exact results. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.
Resumo:
We study the distribution of residence time or equivalently that of "mean magnetization" for a family of Gaussian Markov processes indexed by a positive parameter alpha. The persistence exponent for these processes is simply given by theta=alpha but the residence time distribution is nontrivial. The shape of this distribution undergoes a qualitative change as theta increases, indicating a sharp change in the ergodic properties of the process. We develop two alternate methods to calculate exactly but recursively the moments of the distribution for arbitrary alpha. For some special values of alpha, we obtain closed form expressions of the distribution function. [S1063-651X(99)03306-1].
Resumo:
In this paper, we report an analysis of the protein sequence length distribution for 13 bacteria, four archaea and one eukaryote whose genomes have been completely sequenced, The frequency distribution of protein sequence length for all the 18 organisms are remarkably similar, independent of genome size and can be described in terms of a lognormal probability distribution function. A simple stochastic model based on multiplicative processes has been proposed to explain the sequence length distribution. The stochastic model supports the random-origin hypothesis of protein sequences in genomes. Distributions of large proteins deviate from the overall lognormal behavior. Their cumulative distribution follows a power-law analogous to Pareto's law used to describe the income distribution of the wealthy. The protein sequence length distribution in genomes of organisms has important implications for microbial evolution and applications. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The velocity distribution for a vibrated granular material is determined in the dilute limit where the frequency of particle collisions with the vibrating surface is large compared to the frequency of binary collisions. The particle motion is driven by the source of energy due to particle collisions with the vibrating surface, and two dissipation mechanisms-inelastic collisions and air drag-are considered. In the latter case, a general form for the drag force is assumed. First, the distribution function for the vertical velocity for a single particle colliding with a vibrating surface is determined in the limit where the dissipation during a collision due to inelasticity or between successive collisions due to drag is small compared to the energy of a particle. In addition, two types of amplitude functions for the velocity of the surface, symmetric and asymmetric about zero velocity, are considered. In all cases, differential equations for the distribution of velocities at the vibrating surface are obtained using a flux balance condition in velocity space, and these are solved to determine the distribution function. It is found that the distribution function is a Gaussian distribution when the dissipation is due to inelastic collisions and the amplitude function is symmetric, and the mean square velocity scales as [[U-2](s)/(1 - e(2))], where [U-2](s) is the mean square velocity of the vibrating surface and e is the coefficient of restitution. The distribution function is very different from a Gaussian when the dissipation is due to air drag and the amplitude function is symmetric, and the mean square velocity scales as ([U-2](s)g/mu(m))(1/(m+2)) when the acceleration due to the fluid drag is -mu(m)u(y)\u(y)\(m-1), where g is the acceleration due to gravity. For an asymmetric amplitude function, the distribution function at the vibrating surface is found to be sharply peaked around [+/-2[U](s)/(1-e)] when the dissipation is due to inelastic collisions, and around +/-[(m +2)[U](s)g/mu(m)](1/(m+1)) when the dissipation is due to fluid drag, where [U](s) is the mean velocity of the surface. The distribution functions are compared with numerical simulations of a particle colliding with a vibrating surface, and excellent agreement is found with no adjustable parameters. The distribution function for a two-dimensional vibrated granular material that includes the first effect of binary collisions is determined for the system with dissipation due to inelastic collisions and the amplitude function for the velocity of the vibrating surface is symmetric in the limit delta(I)=(2nr)/(1 - e)much less than 1. Here, n is the number of particles per unit width and r is the particle radius. In this Limit, an asymptotic analysis is used about the Limit where there are no binary collisions. It is found that the distribution function has a power-law divergence proportional to \u(x)\((c delta l-1)) in the limit u(x)-->0, where u(x) is the horizontal velocity. The constant c and the moments of the distribution function are evaluated from the conservation equation in velocity space. It is found that the mean square velocity in the horizontal direction scales as O(delta(I)T), and the nontrivial third moments of the velocity distribution scale as O(delta(I)epsilon(I)T(3/2)) where epsilon(I) = (1 - e)(1/2). Here, T = [2[U2](s)/(1 - e)] is the mean square velocity of the particles.
Resumo:
The primary objective of the paper is to make use of statistical digital human model to better understand the nature of reach probability of points in the taskspace. The concept of task-dependent boundary manikin is introduced to geometrically characterize the extreme individuals in the given population who would accomplish the task. For a given point of interest and task, the map of the acceptable variation in anthropometric parameters is superimposed with the distribution of the same parameters in the given population to identify the extreme individuals. To illustrate the concept, the task space mapping is done for the reach probability of human arms. Unlike the boundary manikins, who are completely defined by the population, the dimensions of these manikins will vary with task, say, a point to be reached, as in the present case. Hence they are referred to here as the task-dependent boundary manikins. Simulations with these manikins would help designers to visualize how differently the extreme individuals would perform the task. Reach probability at the points in a 3D grid in the operational space is computed; for objects overlaid in this grid, approximate probabilities are derived from the grid for rendering them with colors indicating the reach probability. The method may also help in providing a rational basis for selection of personnel for a given task.
Resumo:
Accelerated aging experiments have been conducted on a representative oil-pressboard insulation model to investigate the effect of constant and sequential stresses on the PD behavior using a built-in phase resolved partial discharge analyzer. A cycle of the applied voltage starting from the zero of the positive half cycle was divided into 16 equal phase windows (Φ1 to Φ16) and partial discharge (PD) magnitude distribution in each phase was determined. Based on the experimental results, three stages of aging mechanism were identified. Gumbel's extreme value distribution of the largest element was used to model the first stage of aging process. Second and subsequent stages were modeled using two-parameter Weibull distribution. Spearman's non-parametric rank correlation test statistic and Kolmogrov-Smirnov two sample test were used to relate the aging process of each phase with the corresponding process of the full cycle. To bring out clearly the effect of stress level, its duration and test procedure on the distribution parameters and hence of the aging process, non-parametric ANOVA techniques like Kruskal-Wallis and Fisher's LSD multiple comparison tests were used. Results of the analysis show that two phases (Φ13 and Φ14) near the vicinity of the negative voltage peak were found to contribute significantly to the aging process and their aging mechanism also correlated well with that of the corresponding full cycle mechanism. Attempts have been made to relate these results with the published work of other workers
Resumo:
The size of the shear transformation zone (STZ) that initiates the elastic to plastic transition in a Zr-based bulk metallic glass was estimated by conducting a statistical analysis of the first pop-in event during spherical nanoindentation. A series of experiments led us to a successful description of the distribution of shear strength for the transition and its dependence on the loading rate. From the activation volume determined by statistical analysis the STZ size was estimated based on a cooperative shearing model. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Recent simulations of the stretching of tethered biopolymers at a constant speed v (Ponmurugan and Vemparala, 2011 Phys. Rev. E 84 060101(R)) have suggested that for any time t, the distribution of the fluctuating forces f responsible for chain deformation is governed by a relation of the form P(+ f)/ P(- f) = expgamma f], gamma being a coefficient that is solely a function of v and the temperature T. This result, which is reminiscent of the fluctuation theorems applicable to stochastic trajectories involving thermodynamic variables, is derived in this paper from an analytical calculation based on a generalization of Mazonka and Jarzynski's classic model of dragged particle dynamics Mazonka and Jarzynski, 1999 arXiv:cond-\textbackslashmat/9912121v1]. However, the analytical calculations suggest that the result holds only if t >> 1 and the force fluctuations are driven by white rather than colored noise; they further suggest that the coefficient gamma in the purported theorem varies not as v(0.15)T-(0.7), as indicated by the simulations, but as vT(-1).
Resumo:
We address the problem of robust formant tracking in continuous speech in the presence of additive noise. We propose a new approach based on mixture modeling of the formant contours. Our approach consists of two main steps: (i) Computation of a pyknogram based on multiband amplitude-modulation/frequency-modulation (AM/FM) decomposition of the input speech; and (ii) Statistical modeling of the pyknogram using mixture models. We experiment with both Gaussian mixture model (GMM) and Student's-t mixture model (tMM) and show that the latter is robust with respect to handling outliers in the pyknogram data, parameter selection, accuracy, and smoothness of the estimated formant contours. Experimental results on simulated data as well as noisy speech data show that the proposed tMM-based approach is also robust to additive noise. We present performance comparisons with a recently developed adaptive filterbank technique proposed in the literature and the classical Burg's spectral estimator technique, which show that the proposed technique is more robust to noise.
Resumo:
This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.
Resumo:
Diffusion-a measure of dynamics, and entropy-a measure of disorder in the system are found to be intimately correlated in many systems, and the correlation is often strongly non-linear. We explore the origin of this complex dependence by studying diffusion of a point Brownian particle on a model potential energy surface characterized by ruggedness. If we assume that the ruggedness has a Gaussian distribution, then for this model, one can obtain the excess entropy exactly for any dimension. By using the expression for the mean first passage time, we present a statistical mechanical derivation of the well-known and well-tested scaling relation proposed by Rosenfeld between diffusion and excess entropy. In anticipation that Rosenfeld diffusion-entropy scaling (RDES) relation may continue to be valid in higher dimensions (where the mean first passage time approach is not available), we carry out an effective medium approximation (EMA) based analysis of the effective transition rate and hence of the effective diffusion coefficient. We show that the EMA expression can be used to derive the RDES scaling relation for any dimension higher than unity. However, RDES is shown to break down in the presence of spatial correlation among the energy landscape values. (C) 2015 AIP Publishing LLC.
Resumo:
A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.
Resumo:
Fracture owing to the coalescence of numerous microcracks can be described by a simple statistical model, where a coalescence event stochastically occurs as the number density of nucleated microcracks increases. Both numerical simulation and statistical analysis reveal that a microcrack coalescence process may display avalanche behavior and that the final failure is catastrophic. The cumulative distribution of coalescence events in the vicinity of critical fracture follows a power law and the fracture profile has self-affine fractal characteristic. Some macromechanical quantities may be traced back and extracted from the mesoscopic process based on the statistical analysis of coalescence events.